中国畜牧兽医 ›› 2026, Vol. 53 ›› Issue (2): 859-869.doi: 10.16431/j.cnki.1671-7236.2026.02.031
收稿日期:2025-07-18
出版日期:2026-02-20
发布日期:2026-01-27
通讯作者:
李庆岗
E-mail:827326554@qq.com;LQG3375@163.com
作者简介:许娟,E-mail:827326554@qq.com
基金资助:
XU Juan1(
), ZHANG Huibin1, ZHANG Xiaodong2, LI Qinggang1(
)
Received:2025-07-18
Online:2026-02-20
Published:2026-01-27
Contact:
LI Qinggang
E-mail:827326554@qq.com;LQG3375@163.com
摘要:
目的 探究磷酸三酯酶相关基因(phosphotriesterase related gene,PTER)和钙结合蛋白2(calbindin 2,CALB2)基因多态性与美系大白猪生长性状之间的相关性,为美系大白猪的生长性状分子育种提供新的标记资源。 方法 选取385头达100 kg体重的美系大白猪,测定其背膘厚,采集耳组织样品提取DNA后,根据猪参考基因组(Sscrofa 11.1)序列设计引物,通过PCR产物直接测序鉴定美系大白猪群体PTER和CALB2基因的单核苷酸多态性(SNP)位点,利用POPGENE软件对SNP位点进行遗传多样性分析,并利用SPSS 23.0软件分析其与美系大白猪生长性状的相关性。 结果 多态性检测结果显示,美系大白猪PTER基因g.45384562 G>C位点存在3种基因型:GG、GC和CC,优势等位基因型为GG(0.5403),优势等位基因为G(0.7468);CALB2基因g.14391325 G>A位点存在3种基因型:GG、GA 和AA,优势等位基因型为GA(0.4545),优势等位基因为A(0.5545)。群体遗传分析结果表明,PTER和CALB2基因2个SNPs位点的多态信息含量(PIC)分别为0.31和0.37,属中度多态性(0.25<PIC<0.5)。关联分析结果显示,PTER基因g.45384562 G>C位点对美系大白猪校正100 kg体重日龄无显著影响(P>0.05),GG基因型个体的校正100 kg活体背膘厚显著高于GC和CC基因型(P<0.05);CALB2基因g.14391325 G>A位点对美系大白猪校正100 kg体重日龄及校正100 kg活体背膘厚均存在极显著影响(P<0.01)。联合效应分析表明,PTER基因CC基因型与CALB2基因AA基因型的合并基因型CCAA是与缩短校正100 kg体重日龄和降低校正100 kg活体背膘厚相关的较优基因型组合,其对应个体的这2个性状指标均低于其他个体。 结论 本研究在美系大白猪群体中鉴定了PTER和CALB2基因的2个SNPs位点,且与生长性状存在显著关联,这2个位点(尤其CCAA合并基因型)在美系大白猪的遗传改良中具有一定的应用前景。
中图分类号:
许娟, 章会斌, 张晓东, 李庆岗. 美系大白猪PTER和CALB2基因多态性与生长性状的关联分析[J]. 中国畜牧兽医, 2026, 53(2): 859-869.
XU Juan, ZHANG Huibin, ZHANG Xiaodong, LI Qinggang. Association Analysis of PTER and CALB2 Gene Polymorphisms with Growth Traits in American Yorkshire pigs[J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(2): 859-869.
表4
PTER、CALB2基因不同基因型与美系大白猪校正100 kg体重日龄和活体背膘厚的最小二乘分析"
| 性状 | PTER | CALB2 | ||||
|---|---|---|---|---|---|---|
| Traits | GG | GC | CC | GG | GA | AA |
校正100 kg体重日龄 Corrected days to 100 kg | 162.60±8.90 | 161.50±8.80 | 159.70±9.40 | 166.20±7.70A | 162.50±9.00B | 158.50±8.20C |
校正100 kg活体背膘厚 Corrected live backfat thickness at 100 kg/mm | 11.48±2.47a | 10.93±2.57b | 9.90±1.60b | 11.89±2.11A | 11.38±2.29A | 10.42±2.83B |
表5
PTER、CALB2基因不同基因型校正100 kg体重日龄和活体背膘厚的基因效应分析"
| 性状 | PTER基因效应 PTER gene effect | CALB2基因效应 CALB2 gene effect | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Traits | d | a | D | α1 | α2 | △α | d | a | D | α1 | α2 | △α |
校正100 kg体重日龄 Corrected days to 100 kg | 0.350 | 2.900 | 0.121 | 0.691 | ―2.036 | ―2.727 | 0.150 | 7.700 | 0.019 | 4.279 | ―3.438 | ―7.716 |
校正100 kg活体背膘厚 Corrected live backfat thickness at 100 kg/mm | 0.204 | 0.790 | 0.304 | 0.170 | ―0.502 | ―0.672 | 0.225 | 0.735 | 0.306 | 0.421 | ―0.338 | ―0.759 |
表6
PTER、CALB2基因合并基因型与美系大白猪校正100 kg体重日龄的最小二乘分析"
合并基因型 Combined genotypes | 样本量 N/头 | 校正100 kg日龄 Corrected days to 100 kg | 显著性检验 Significance test | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| GGGG | GGGA | GGAA | GCGG | GCGA | GCAA | CCGG | CCGA | CCAA | |||
| GGGG | 41 | 169.1±6.8 | 0.000** | 0.000** | 0.003** | 0.000** | 0.000** | 0.257 | 0.023* | 0.000** | |
| GGGA | 99 | 162.9±8.9 | 0.000** | 0.001** | 0.756 | 0.519 | 0.010** | 0.932 | 0.675 | 0.035* | |
| GGAA | 68 | 158.3±7.7 | 0.000** | 0.001** | 0.002** | 0.009** | 0.575 | 0.311 | 0.292 | 0.483 | |
| GCGG | 40 | 163.4±7.8 | 0.003** | 0.756 | 0.002** | 0.423 | 0.018* | 0.989 | 0.583 | 0.031* | |
| GCGA | 68 | 162.1±8.9 | 0.000** | 0.519 | 0.009** | 0.423 | 0.065 | 0.797 | 0.888 | 0.068 | |
| GCAA | 51 | 159.2±9.0 | 0.000** | 0.010** | 0.575 | 0.018* | 0.065 | 0.405 | 0.445 | 0.343 | |
| CCGG | 3 | 163.3±2.8 | 0.257 | 0.932 | 0.311 | 0.989 | 0.797 | 0.405 | 0.763 | 0.204 | |
| CCGA | 8 | 161.6±12.7 | 0.023* | 0.675 | 0.292 | 0.583 | 0.888 | 0.445 | 0.763 | 0.194 | |
| CCAA | 7 | 156.0±5.4 | 0.000** | 0.035* | 0.483 | 0.031* | 0.068 | 0.343 | 0.204 | 0.194 | |
表7
PTER、CALB2基因合并基因型与美系大白猪校正100 kg活体背膘厚的最小二乘分析"
合并基因型 Combined genotypes | 样本量 N/头 | 校正100 kg 活体背膘厚 Corrected live backfat thickness at 100 kg/mm | 显著性检验Significance test | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| GGGG | GGGA | GGAA | GCGG | GCGA | GCAA | CCGG | CCGA | CCAA | |||
| GGGG | 41 | 12.32±2.03 | 0.186 | 0.000** | 0.167 | 0.007** | 0.000** | 0.144 | 0.037* | 0.002** | |
| GGGA | 99 | 11.72±2.08 | 0.186 | 0.004** | 0.744 | 0.064 | 0.001** | 0.284 | 0.127 | 0.010** | |
| GGAA | 68 | 10.61±2.97 | 0.000** | 0.004** | 0.048* | 0.340 | 0.498 | 0.770 | 0.777 | 0.161 | |
| GCGG | 40 | 11.58±2.18 | 0.167 | 0.744 | 0.048* | 0.247 | 0.014* | 0.344 | 0.197 | 0.021* | |
| GCGA | 68 | 11.01±2.58 | 0.007** | 0.064 | 0.340 | 0.247 | 0.119 | 0.569 | 0.471 | 0.070 | |
| GCAA | 51 | 10.31±2.74 | 0.000** | 0.001** | 0.498 | 0.014* | 0.119 | 0.937 | 0.959 | 0.284 | |
| CCGG | 3 | 10.20±0.74 | 0.144 | 0.284 | 0.770 | 0.344 | 0.569 | 0.937 | 0.922 | 0.577 | |
| CCGA | 8 | 10.36±1.51 | 0.037* | 0.127 | 0.777 | 0.197 | 0.471 | 0.959 | 0.922 | 0.383 | |
| CCAA | 7 | 9.26±1.90 | 0.002** | 0.010** | 0.161 | 0.021* | 0.070 | 0.284 | 0.577 | 0.383 | |
| [1] | HELAL M, SAMEH J, GHARIB S, et al. Candidate genes associated with reproductive traits in rabbits[J]. Tropical Animal Health and Production, 2024, 56(2):94. |
| [2] | ZHANG S, ZHANG K, PENG X, et al. Selective sweep analysis reveals extensive parallel selection traits between Large White and Duroc pigs[J]. Evolutionary Applications, 2020, 13(10):2807-2820. |
| [3] | GORSSEN W, WINTERS C, MEYERMANS R, et al. Estimating genetics of body dimensions and activity levels in pigs using automated pose estimation[J]. Scientific Reports, 2022, 12(1):15384. |
| [4] | MALGWI I H, HALAS V, GRUNVALD P, et al. Genes related to fat metabolism in pigs and intramuscular fat content of pork: A focus on nutrigenetics and nutrigenomics[J]. Animals (Basel), 2022, 12(2):150. |
| [5] | ZHOU P, YIN C, WANG Y, et al. Genomic association analysis of growth and backfat traits in Large White pigs[J]. Genes (Basel), 2023, 14(6):1258. |
| [6] | THORLEIFSSON G, WALTERS G B, GUDBJARTSSON D F, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity[J]. Nature Genetics (New York, N.Y.), 2009,41(1):18-24. |
| [7] | WILLER C J, SPELIOTES E K, LOOS R J, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation[J]. Nature Genetics, 2009, 41 (1): 25-34 |
| [8] | VIMALESWARAN K S, TACHMAZIDOU I, ZHAO J H, et al. Candidate genes for obesity-susceptibility show enriched association within a large genome-wide association study for BMI[J]. Human Molecular Genetics, 2012, 21(20):4537-4542. |
| [9] | FLORES-DORANTES M T, DIAZ-LOPEZ Y E, GUTIERREZ-AGUILAR R. Environment and gene association with obesity and their impact on neurodegenerative and neurodevelopmental diseases[J]. Frontiers in Neuroscience, 2020, 14:863. |
| [10] | WEI W, LYU X, MARKHARD A L, et al. PTER is a N-acetyltaurine hydrolase that regulates feeding and obesity[J]. Nature, 2024, 633(8028):182-188. |
| [11] | CHEN W, CHEN Y, WU R, et al. DHA alleviates diet-induced skeletal muscle fiber remodeling via FTO/ m6A /DDIT4/PGC1α signaling[J]. BMC Biology, 2022, 20(1):39. |
| [12] | GALUSZKA A, PAWLICKI P, PARDYAK L, et al. Abundance of estrogen receptors involved in non-canonical signaling in the dog testis[J]. Animal Reproduction Science, 2021, 35:106888. |
| [13] | SUN J, WANG C, WU Y, et al. Association analysis of METTL23 gene polymorphisms with reproductive traits in Kele pigs[J]. Genes (Basel), 2024, 15(8):1061. |
| [14] | EISNER D, NEHER E, TASCHENBERGER H, et al. Physiology of intracellular calcium buffering[J]. Physiological Reviews, 2023, 103(4):2767-2845. |
| [15] | XIANG Y, WU Y, ZHANG H, et al. Characterization and localization of CALB2 in both the testis and ovary of the Japanese flounder (Paralichthys olivaceus)[J]. Animals (Basel), 2020, 10(9):1503. |
| [16] | LUAN S, WANG C. Calcium signaling mechanisms across kingdoms[J]. Annual Review of Cell and Developmental Biology, 2021, 37(1):311-340. |
| [17] | YEH F C, YANG R C, BOYLE T B J, et al. POPGENE, the User-friendly Shareware for Population Genetic Analysis[M]. Canada:Molecular Biology and Biotechnology Centre, 1997. |
| [18] | 李庆岗, 田广友, 吴义景, 等. 定远猪CATSPER1基因多态性及与产仔数的相关分析[J]. 养猪, 2019, 3:70-72. |
| LI Q G, TIAN G Y, WU Y J, et al. Polymorphism of CATSPER1 gene and its association with litter size in Dingyuan pigs[J]. Swine Production, 2019, 3:70-72. (in Chinese) | |
| [19] | TANG M, LI X, REN J, et al. Limosilactobacillus reuteri HM108 alleviates obesity in rats fed a high-fat diet by modulating the gut microbiota, metabolites, and inhibiting the JAK-STAT signalling pathway[J]. Frontiers in Nutrition, 2025, 12:1597334. |
| [20] | 王金芳, 黄鑫, 郝翠芳. 磷酸三酯酶相关基因与肥胖关系的研究进展[J]. 生殖医学杂志, 2013, 22(12):974-977. |
| WANG J F, HUANG X, HAO C F. Research progress in the relationship between obesity and PTER [J]. Journal of Reproductive Medicine, 2013, 22(12):974-977.(in Chinese) | |
| [21] | BACON E K, DONNELLY C G, FINNO C J, et al. Exploring the genetic influences on equine analgesic efficacy through genome-wide association analysis of ranked pain responses[J]. The Veterinary Journal, 2025, 312:106347. |
| [22] | MASOOD B, MOORTHY M. Causes of obesity: A review[J]. Clinical Medicine, 2023, 23(4):284-291. |
| [23] | GUTIERREZ‐AGUILAR R, KIM D H, WOODS S C, et al. Expression of New loci associated with obesity in diet-induced obese rats: From genetics to physiology[J]. Obesity, 2012, 20(2):306-312. |
| [24] | LAURIDSEN C. Effects of dietary fatty acids on gut health and function of pigs pre-and post-weaning[J]. Journal of Animal Science, 2020, 98(4):skaa086. |
| [25] | WANG Z, LI Y, WU L, et al. Rosiglitazone-induced PPARγ activation promotes intramuscular adipocyte adipogenesis of pig[J]. Animal Biotechnology, 2023, 34(8):3708-3717. |
| [26] | BOUCHARD C. Genetics of obesity: What we have learned over decades of research[J]. Obesity, 2021, 29(5):802-820. |
| [27] | HIRST N L, LAWTON S P, WALKER A J. CaMKⅡ regulates neuromuscular activity and survival of the human blood fluke Schistosoma mansoni [J]. Scientific Reports, 2022, 12(1):19831. |
| [28] | WANG X, CHI C, HE J, et al. SINE insertion may act as a repressor to affect the expression of pig LEPROT and growth traits[J]. Genes (Basel), 2022, 13(8):1422. |
| [29] | GUPTA S, KAUR N, KANT K, et al. Calcium: A master regulator of stress tolerance in plants[J]. South African Journal of Botany, 2023, 163:580-594. |
| [30] | SOLANKI R, DHAKA S S, RATWAN P, et al. Identification of IGFBP2 gene polymorphism and association of genotypes with performance traits in Large White Yorkshire pigs[J]. Tropical Animal Health and Production, 2025, 57(6):286. |
| [31] | WU K, BU F, WU Y, et al. Exploring noncoding variants in genetic diseases: From detection to functional insights[J]. Journal of Genetics and Genomics, 2024, 51(2):111-132. |
| [1] | 赖金花, 王孝义, 吴娅, 朱东霞, 朱怡轩, 张克忠, 黄兆军, 管和平, 李明丽, 鲁绍雄. 宣和猪ADRP和FASN基因多态性及其与肉质性状的关联分析[J]. 中国畜牧兽医, 2026, 53(2): 879-891. |
| [2] | 张寒冰, 郭亚苹, 张家庆, 任巧玲, 陈俊峰, 刘付玖, 王璟, 邢宝松. 基因编辑技术及其在猪育种中的应用研究进展[J]. 中国畜牧兽医, 2026, 53(1): 1-14. |
| [3] | 柴圆, 包成林, 张玲艳, 宫淑艳, 齐澈力木格, 鲍艳春, 朱蒙, 曹赛, 李建功, 于国杰, 林靖凯, 张文广. 单细胞测序技术在畜禽遗传育种中的应用研究进展[J]. 中国畜牧兽医, 2026, 53(1): 15-26. |
| [4] | 志莉, 戴思凡, 刘雪琴, 陈泉贞, 俞英, 毛华明. 转录组学和代谢组学技术在牛肉质性状研究中的应用[J]. 中国畜牧兽医, 2025, 52(12): 5600-5613. |
| [5] | 齐浩南, 霍浩楠, 曹磊, 张元庆, 黄永业, 余大为. 体细胞核移植克隆西藏濒危樟木牛[J]. 中国畜牧兽医, 2025, 52(12): 5740-5748. |
| [6] | 张梦萍, 林明昕, 吴忠亮, 罗景飞, 陈珊对儿, 吴琼. 石潭鸡与中国地方鸡种mtDNA密码子偏好性分析[J]. 中国畜牧兽医, 2025, 52(12): 5772-5784. |
| [7] | 贾雨轩, 韩飞, 曾广湖, 沈祥玉, 龚婷. 贵州地方猪TAS1R1基因多态性及其与生长性状的关联分析[J]. 中国畜牧兽医, 2025, 52(12): 5809-5820. |
| [8] | 郭世伟, 刘圆, 郝志云, 张希云, 车陇杰, 李明娜, 任春燕, 王继卿, 王自科. FABP3基因多态性及其对绵羊泌乳性状的影响[J]. 中国畜牧兽医, 2025, 52(11): 5265-5275. |
| [9] | 李功腾, 王天骄, 陈旭, 高鹤轩, 杨苏坤, 闫霄枫, 刘欣, 邢秀梅. 塔里木马鹿KCNQ1基因生物信息学分析及其非同义突变对蛋白表达的影响[J]. 中国畜牧兽医, 2025, 52(10): 4549-4562. |
| [10] | 缑帅帅, 刘玲玲, 曹行, 陈秋明, 吉飞龙, 刘武军. 基于全基因组数据对新疆5个地方绵羊品种特异性SNP位点的筛选及鉴定[J]. 中国畜牧兽医, 2025, 52(10): 4754-4764. |
| [11] | 杨蓉, 周迪, 王珍梅, 田兴舟, 陈祥, 吕艳丽, 吴雨, 敖叶, 郭振刚, 赵德鹏, 黄清赟, 张悻. 贵州黑山羊AMH、CYP19A1基因多态性及其与产羔数的关联分析[J]. 中国畜牧兽医, 2025, 52(10): 4785-4795. |
| [12] | 韩煦, 彭渝, 张立兰, 刘田侠, 李红强, 陶聪. 藏猪脂肪细胞产热分子特征研究[J]. 中国畜牧兽医, 2025, 52(10): 4796-4808. |
| [13] | 张长亮, 徐志婷, 郭凯旋, 苏超, 宁文哲, 司景磊, 周隽, 高亚辉, 张哲. 杜洛克猪平均日增重的全基因组关联分析[J]. 中国畜牧兽医, 2025, 52(10): 4822-4829. |
| [14] | 赵润泽, 闵兆玲, 牛乃琪, 宗文成, 闫益波, 张龙超. 基于GWAS及双选系胚胎基因表达差异联合分析鉴定北京黑猪胸椎数主效基因[J]. 中国畜牧兽医, 2025, 52(9): 4182-4194. |
| [15] | 罗春彦, 白锋, 滕文, 阿米妮古丽·阿不来孜, 玛尔孜娅·亚森, 周喜荣, 纳扎开提·艾尼万尔, 买斯吐尔古丽·阿布力提甫, 张耘滔, 纪新民, 张艳花. 基于简化基因组测序的吐鲁番黑羊遗传结构分析[J]. 中国畜牧兽医, 2025, 52(9): 4216-4225. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||