[1] 王玥.AMH在东宝黑头羊繁殖潜能预测中的应用研究[D].武汉:华中农业大学,2023. WANG Y.Application of AMH in predicting reproductive potential of Dongbao Black-headed goat[D].Wuhan:Huazhong Agricultural University,2023.(in Chinese) [2] MULLEN R D,ONTIVEROS A E,MOSES M M,et al.AMH and AMHR2 mutations:A spectrum of reproductive phenotypes across vertebrate species[J].Developmental Biology,2019,455(1):1-9. [3] HUANG S J,PUREVSUREN L,JIN F,et al.Effect of anti-Müllerian hormone on the development and selection of ovarian follicle in hens[J].Poultry Science,2021,100(3):100959. [4] ALMEIDA F,COSTERMANS N,SOEDE N M,et al.Presence of anti-Müllerian hormone (AMH) during follicular development in the porcine ovary[J].PLoS One,2018,13(7):e0197894. [5] 王磊.BMP6调控山羊卵巢颗粒细胞功能及AMH表达的机制研究[D].重庆:西南大学,2022. WANG L.BMP6 regulates the function of goat ovarian granulosa cell and the mechanism of AMH expression[D].Chongqing:Southwest University,2022.(in Chinese) [6] XU J,XU F,LAWSON M S,et al.Anti-Müllerian hormone is a survival factor and promotes the growth of Rhesus macaque preantral follicles during matrix-free culture[J].Biology of Reproduction,2018,98(2):197-207. [7] DEWAILLY D,ANDERSEN C Y,BALEN A,et al.The physiology and clinical utility of anti-Müllerian hormone in women[J].Human Reproduction Update,2014,20(3):370-385. [8] PELLATT L,RICE S,DILAVER N,et al.Anti-Müllerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells[J].Fertility and Sterility,2011,96(5):1246-1251. [9] ROCHA R M P,LIMA L F,CARVALHO A A,et al.Immunolocalization of the anti-Müllerian hormone(AMH) in caprine follicles and the effects of AMH on in vitro culture of caprine pre-antral follicles enclosed in ovarian tissue[J].Reproduction in Domestic Animals,2016,51(2):212-219. [10] GHOSH D,GRISWOLD J,ERMAN M,et al.Structural basis for androgen specificity and oestrogen synthesisin human aromatase[J].Nature,2009,457(7226):219-223. [11] TORRESROVIRA L,SUCCU S,PASCIU V,et al.Postnatal pituitary and follicular activation:A revisited hypothesis in a sheep model[J].Reproduction,2016,151(3):215-225. [12] CADORET V,FRAPSAUCE C,JARRIER P,et al.Molecular evidence that follicle development is accelerated in vitro compared to in vivo[J].Reproduction,2017,153(5):493-508. [13] GMZA B,YXGB C,CYC B,et al.Arginine infusion rescues ovarian follicular development in feed-restricted Hu sheep during the luteal phase[J].Theriogenology,2020,158:75-83. [14] BU Q,LIU S,WANG Z,et al.PITX2 regulates steroidogenesis in granulosa cells of dairy goat by the Wnt/β-catenin pathway[J].General and Comparative Endocrinology,2022,321-322:114027. [15] ZHANG Y,CHEN X,ZHOU Z,et al.CYP19A1 may influence lambing traits in goats by regulating the biological function of granulosa cells[J].Animals,2022,12(15):1911. [16] QUIRK S M,COWAN R G,HARMAN R M.The susceptibility of granulosa cells to apoptosis is influenced by oestradiol and the cell cycle[J].The Journal of Endocrinology,2006,189(3):441-453. [17] PAN Z,ZHANG J,LIN F,et al.Expression profiles of key candidate genes involved in steroidogenesis during follicular atresia in the pig ovary[J].Molecular Biology Reports,2012,39(12):10823-10832. [18] GAGLIARDI L,SCOTT H S,FENG J,et al.A case of Aromatase deficiency due to a novel CYP19A1 mutation[J]. BMC Endocrine Disorders,2014,14:16. [19] 刘大艳,何珊,朱文杰,等.超排卵周期中卵巢颗粒细胞CYP19A1 mRNA的表达与卵巢反应性关系的研究[J].中国妇幼保健,2015,30(20):3446-3449. LIU D Y,HE S,ZHU W J,et al.Study on the relationship between CYP19A1 mRNA expression in ovarian granular cells and ovarian response in controlled ovarian hyperstimulation cycles[J]. Maternal and Child Health Care of China,2015,30(20):3446-3449.(in Chinese) [20] 肖文,韩勇,杨红文,等.黑山羊及其杂交后代育肥性能、屠宰性能及肉质性状的比较研究[J].中国畜牧兽医,2024,51(6):2429-2439. XIAO W,HAN Y,YANG H W,et al.Comparative study on the fattening performance,slaughter performance and meat quality of Black goats and their hybrid offspring[J].China Animal Husbandry & Veterinary Medicine,2024,51(6):2429-2439.(in Chinese) [21] 李世歌,刘凤丹,陈彦伶,等.复合植物源添加剂对贵州黑山羊断奶羔羊生长性能、血清生化指标和瘤胃微生物区系的影响[J].饲料研究,2025,7:11-15. LI S G,LIU F D,CHEN Y L,et al.Effects of compound phytogenic additive on growth performance,serum biochemical indices,and rumen microflora in weaned lambs of Guizhou Black goats[J].Feed Research,2025,7:11-15.(in Chinese) [22] DUTTA R,LASKAR S,BORAH P,et al.Polymorphism and nucleotide sequencing of BMPR1B gene in prolific Assam hill goat[J].Molecular Biology Reports,2014,41(6):3677-3681. [23] AN X P,HOU J X,LEI Y N,et al.Two mutations in the 5'-flanking region of the KITLG gene are associated with litter size of dairy goats[J].Animal Genetics,2015,46(3):308-311. [24] HOU J X,AN X P,HAN P,et al.Two missense mutations in exon 9 of caprine PRLR gene were associated with litter size[J].Animal Genetics,2015,46(1):87-90. [25] THOMAS N,VENKATACHALAPATHY T,ARAVINDAKSHAN T,et al.Molecular cloning,SNP detection and association analysis of 5' flanking region of the goat IGF1 gene with prolificacy[J].Animal Reproduction Science,2016,167:8-15. [26] MAHDAVI M,NANEKARANI S,HOSSEINI S D.Mutation in BMPR-ⅠB gene is associated with litter size in Iranian Kalehkoohi sheep[J].Animal Reproduction Science,2014,147(3-4):93-98. [27] CHANTEPIE L,BODIN L,SARRY J,et al.Genome-wide identification of a regulatory mutation in BMP15 controlling prolificacy in sheep[J].Frontiers in Genetics,2020,11:585. [28] DAG I V,HUSDAL M,KENT M P,et al.A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep[J].BMC Genetics,2013,14(1):1. [29] 高爱琴,李金泉,李宁,等.绵羊FGF5基因SNP的生物信息学分析[J].中国畜牧杂志,2008,5:5-7. GAO A Q,LI J Q,LI N,et al.Bioinformatics analysis of SNP in the FGF5 gene of sheep[J].Chinese Journal of Animal Science,2008,5:5-7.(in Chinese) [30] 李青,卢曾奎,金美林,等.绵羊BMP2基因型与尾性状的关联分析[J].农业生物技术学报,2019,27(11):1985-1995. LI Q,LU Z K,JIN M L,et al.Association analysis of the BMP2 genotype with sheep (Ovis aries) tail traits[J].Chinese Journal of Agricultural Biotechnology,2019,27(11):1985-1995.(in Chinese) [31] 贾美婷,李显耀,康丽,等.寿光鸡GPR147基因5'调控区多态性与产蛋性状的关联分析[J].畜牧兽医学报,2016,47(1):34-40. JIA M T,LI X Y,KANG L,et al.Association of polymorphisms in the 5'regulatory region of GPR147 with laying performance in Shouguang chickens[J].Acta Veterinaria et Zootechnica Sinica,2016,47(1):34-40.(in Chinese) [32] 王立凯.外周血AMH浓度与奶绵羊超数排卵性能相关性研究[D].呼和浩特:内蒙古大学,2019. WANG L K.Correlation between peripheral blood amhconcentration and super-oovlation performance of dairy sheep[D].Hohhot:Inner Mongolia University,2019.(in Chinese) [33] TURGUT A O,KOCA D.Anti-Müllerian hormone as a promising novel biomarker for litter size in Romanov sheep[J].Reproduction in Domestic Animals,2024,59(8):e14692. [34] HAN Y G,ZENG Y,HUANG Y F,et al.A nonsynonymous SNP within the AMH gene is associated with litter size in Dazu Black goats[J].Animal Biotechnology,2022,33(5):992-996. [35] GUO C,YE J,LIU J,et al.Whole-genome sequencing identified candidate genes associated with high and low litter size in Chuanzhong Black goats[J].Frontiers in Veterinary Science,2024,11:1420164. [36] 杨安琪,李嘉诚,宋颖,等.CYP19A1对兔卵巢颗粒细胞增殖和凋亡的影响[J].畜牧兽医学报,2023,54(10):4209-4219. YANG A Q,LI J C,SONG Y,et al.Effects of CYP19A1 on proliferation and apoptosis of rabbit ovary granulosa cells[J].Acta Veterinaria et Zootechnica Sinica,2023,54(10):4209-4219.(in Chinese) [37] ZHU M,YANG Y,YANG H,et al.Whole-genome resequencing of the native sheep provides insights into the microevolution and identifies genes associated with reproduction traits[J].BMC Genomics,2023,24(1):392. [38] 张艳,陈祥,周志楠,等.黔北麻羊CYP17A1、CYP19A1基因组织表达、功能预测及与产羔数的关联性分析[J].农业生物技术学报,2022,30(6):1140-1152. ZHANG Y,CHEN X,ZHOU Z N,et al.Tissue expression,functional prediction of CYP17A1 and CYP19A1 genes in Qianbei Ma goat (Capra hircus) and its association analysis with litter size[J].Chinese Journal of Agricultural Biotechnology,2022,30(6):1140-1152.(in Chinese) [39] WANG Y,NIU Z,ZENG Z,et al.Using high-density SNP array to reveal selection signatures related to prolificacy in Chinese and Kazakhstan sheep breeds[J].Animals,2020,10(9):1633. [40] EL-BAYOMI K M,SALEH A A,AWAD A,et al.Association of CYP19A1 gene polymorphisms with anoestrus in water buffaloes[J].Reproduction Fertility and Development,2018,30(3):487-497. |