[1] 黄永震,张桂民,贺 花,等.家养动物转录组学研究进展[J].中国牛业科学,2018,44(1):72-78. HUANG Y Z,ZHANG G M,HE H,et al.Advances in transcriptomic of domestic animals[J].China Cattle Science,2018,44(1):72-78.(in Chinese) [2] 崔 岩.延边黄牛不同肌肉组织风味物质差异比较和代谢组学分析[D].延吉:延边大学,2021. CUI Y.Comparison of flavor compounds and metabolomics analysis in different muscle tissues of Yanbian Yellow cattle[D].Yanji:Yanbian University,2021.(in Chinese) [3] ZHANG T,CHEN C,XIE K,et al.Current state of metabolomics research in meat quality analysis and authentication[J].Foods,2021,10(10):2388. [4] COSTA V,ANGELINI C,DE FEIS I,et al.Uncovering the complexity of transcriptomes with RNA-Seq[J].Journal of Biomedicine and Biotechnology,2010,2010:853916. [5] WANG Z,GERSTEIN M,SNYDER M.RNA-Seq:A revolutionary tool for transcriptomics[J].Nature Reviews Genetics,2009,10(1):57-63. [6] PARKHOMCHUK D,BORODINA T,AMSTISLAVSKIY V,et al.Transcriptome analysis by strand-specific sequencing of complementary DNA[J].Nucleic Acids Research,2009,37(18):e123. [7] NICHOLSON J K,LINDON J C,HOLMES E.'Metabonomics’:Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J].Xenobiotica,1999,29(11):1181-1189. [8] FIEHN O.Metabolomics—The link between genotypes and phenotypes[J].Plant Molecular Biology,2002,48(1-2):155-171. [9] CHRISTODOULOU C C,ZACHARIOU M,TOMAZOU M,et al.Investigating the transition of pre-symptomatic to symptomatic Huntington’s disease status based on omics data[J].International Journal of Molecular Sciences,2020,21(19):7414. [10] HAO L,WANG J,PAGE D,et al.Comparative evaluation of MS-based metabolomics software and its application to preclinical Alzheimer’s disease[J].Scientific Reports,2018,8(1):9291. [11] FIEHN O.Combining genomics,metabolome analysis,and biochemical modelling to understand metabolic networks[J].Comparative and Functional Genomics,2001,2(3):155-168. [12] CHEN L,ZHONG F,ZHU J.Bridging targeted and untargeted mass spectrometry-based metabolomics via hybrid approaches[J].Metabolites,2020,10(9):348. [13] SHAO Y,LE W.Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease[J].Molecular Neurodegeneration,2019,14(1):3. [14] JANG C,CHEN L,RABINOWITZ J D.Metabolomics and isotope tracing[J].Cell,2018,173(4):822-837. [15] EMWAS A H.The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research[J].Methods in Molecular Biology,2015,1277:161-193. [16] AMBERG A,RIEFKE B,SCHLOTTERBECK G,et al.NMR and MS methods for metabolomics[J].Methods in Molecular Biology,2017,1641:229-258. [17] HARLINA P W,MARITHA V,MUSFIROH I,et al.Possibilities of liquid chromatography mass spectrometry (LC-MS)-based metabolomics and lipidomics in the authentication of meat products:A mini review[J].Food Science of Animal Resources,2022,42(5):744-761. [18] CONTE F,CINCOTTA F,CONDURSO C,et al.Odor emissions from raw meat of freshly slaughtered cattle during inspection[J].Foods,2021,10(10):2411. [19] SUN C,WANG R,WANG T,et al.Primary evaluation of nine volatile N-nitrosamines in raw red meat from Tianjin,China,by HS-SPME-GC-MS[J].Food Chemistry,2020,310:125945. [20] LOOMAS K R,WOERNER D R,BOHRER B M,et al.Evaluation of rapid evaporative ionization mass spectrometry (REIMS) for the prediction of slice shear force and quality grades in beef longissimus lumborum steaks[J].Meat Science,2025,222:109752. [21] GREDELL D A,SCHROEDER A R,BELK K E,et al.Comparison of machine learning algorithms for predictive modeling of beef attributes using rapid evaporative ionization mass spectrometry (REIMS) data[J].Scientific Reports,2019,9(1):5721. [22] HE Q,YANG M,CHEN X,et al.Differentiation between fresh and frozen-thawed meat using rapid evaporative ionization mass spectrometry:The case of beef muscle[J].Journal of Agricultural and Food Chemistry,2021,69(20):5709-5724. [23] EDISON A S,COLONNA M,GOUVEIA G J,et al.NMR:Unique strengths that enhance modern metabolomics research[J].Analytical Chemistry,2021,93(1):478-499. [24] MARKLEY J L,BRüSCHWEILER R,EDISON A S,et al.The future of NMR-based metabolomics[J].Current Opinion in Biotechnology,2017,43:34-40. [25] SCHMIDT D R,PATEL R,KIRSCH D G,et al.Metabolomics in cancer research and emerging applications in clinical oncology[J].CA:A Cancer Journal for Clinicians,2021,71(4):333-358. [26] FEIZI N,HASHEMI-NASAB F S,GOLPELICHI F,et al.Recent trends in application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic studies[J].Trends in Analytical Chemistry,2021,138:116239. [27] FIEHN O.Metabolomics by gas chromatography-mass spectrometry:Combined targeted and untargeted profiling[J].Current Protocols in Molecular Biology,2016,114:30.34.31-30.34.32. [28] PEREZ DE SOUZA L,ALSEEKH S,SCOSSA F,et al.Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research[J].Nature Methods,2021,18(7):733-746. [29] PEZZATTI J,BOCCARD J,CODESIDO S,et al.Implementation of liquid chromatography-high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples:A tutorial[J].Analytica Chimica Acta,2020,1105:28-44. [30] THEODORIDIS G A,GIKA H G,WANT E J,et al.Liquid chromatography-mass spectrometry based global metabolite profiling:A review[J].Analytica Chimica Acta,2012,711:7-16. [31] ZHONG P,WEI X,LI X,et al.Untargeted metabolomics by liquid chromatography-mass spectrometry for food authentication:A review[J].Comprehensive Reviews in Food Science and food Safety,2022,21(3):2455-2488. [32] VAN DEN BERG R A,HOEFSLOOT H C,WESTERHUIS J A,et al.Centering,scaling,and transformations:Improving the biological information content of metabolomics data[J].BMC Genomics,2006,7:142. [33] KVALHEIM O M,BRAKSTAD F,LIANG Y.Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise[J].Analytical Chemistry,1994,66(1):43-51. [34] SACCENTI E,HOEFSLOOT H C J,SMILDE A K,et al.Reflections on univariate and multivariate analysis of metabolomics data[J].Metabolomics,2014,10(3):361-374. [35] MAX BYLESJÖ,RANTALAINEN M,CLOAREC O,et al.OPLS discriminant analysis:Combining the strengths of PLS-DA and SIMCA classification[J].Journal of Chemometrics,2006,20:341-351. [36] DE FABRITIIS S,VALENTINUZZI S,PIRAS G,et al.Targeted metabolomics detects a putatively diagnostic signature in plasma and dried blood spots from head and neck paraganglioma patients[J].Oncogenesis,2023,12(1):10. [37] WORLEY B,POWERS R.PCA as a practical indicator of OPLS-DA model reliability[J].Current Metabolomics,2016,4(2):97-103. [38] LIEBAL U W,PHAN A N T,SUDHAKAR M,et al.Machine learning applications for mass spectrometry-based metabolomics[J].Metabolites,2020,10(6):243. [39] ZHANG Y J,LUO Z,SUN Y,et al.From beasts to bytes:Revolutionizing zoological research with artificial intelligence[J].Zoological Research,2023,44(6):1115-1131. [40] WOLPERT D H,MACREADY W G.No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation,1997,1(1):67-82. [41] CHEN N,WANG H B,WU B Q,et al.Using random forest to detect multiple inherited metabolic diseases simultaneously based on GC-MS urinary metabolomics[J].Talanta,2021,235:122720. [42] KANG Y,VIJAY S,GUJRAL T S.Deep neural network modeling identifies biomarkers of response to immune-checkpoint therapy[J].iScience,2022,25(5):104228. [43] WANG H,WANG Y,LI X,et al.Machine learning of plasma metabolome identifies biomarker panels for metabolic syndrome:Findings from the China Suboptimal Health Cohort[J].Cardiovasc Diabetol,2022,21(1):288. [44] SZCZEPANEK R.Daily streamflow forecasting in mountainous catchment using XGBoost,LightGBM and CatBoost[J].Hydrology,2022,9(12):226. [45] MA R,CHEN R,LIANG B,et al.A XGBoost-based prediction method for meat sheep transport stress using wearable photoelectric sensors and infrared thermometry[J].Sensors,2024,24(23):7826. [46] KIM H W,ZHANG C,COTTRELL G W,et al.SMART-Miner:A convolutional neural network-based metabolite identification from 1H-13C HSQC spectra[J].Magnetic Resonance in Chemistry,2022,60(11):1070-1075. [47] LI M,WANG X R.Peak alignment of gas chromatography-mass spectrometry data with deep learning[J].Journal of Chromatography A,2019,1604:460476. [48] CHAGOYEN M,LÓPEZ-IBÁÑEZ J,PAZOS F.Functional analysis of metabolomics data[J].Methods in Molecular Biology,2016,1415:399-406. [49] RAMANATHAN R,KIYIMBA F,SUMAN S P,et al.The potential of metabolomics in meat science:Current applications,trends,and challenges[J].Journal of Proteomics,2023,283-284:104926. [50] PANG Z,CHONG J,ZHOU G,et al.MetaboAnalyst 5.0:Narrowing the gap between raw spectra and functional insights[J].Nucleic Acids Research,2021,49(W1):W388-W396. [51] RAMANATHAN R,KIYIMBA F,GONZALEZ J,et al.Impact of up- and down-regulation of metabolites and mitochondrial content on pH and color of the longissimus muscle from normal-pH and dark-cutting beef[J].Journal of Agricultural and Food Chemistry,2020,68(27):7194-7203. [52] KIM Y H,KEMP R,SAMUELSSON L M.Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins[J].Meat Science,2016,111:168-176. [53] SETYABRATA D,VIERCK K,SHEETS T R,et al.Characterizing the flavor precursors and liberation mechanisms of various dry-aging methods in cull beef loins using metabolomics and microbiome approaches[J].Metabolites,2022,12(6):472. [54] O’DONNELL V B,EKROOS K,LIEBISCH G,et al.Lipidomics:Current state of the art in a fast moving field[J].Wiley Interdisciplinary Reviews-Systems Biology and Medicine,2020,12(1):e1466. [55] SUBBARAJ A K,KIM Y H,FRASER K,et al.A hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) based metabolomics study on colour stability of ovine meat[J].Meat Science,2016,117:163-172. [56] SETYABRATA D,WAGNER A D,COOPER B R,et al.Effect of dry-aging on quality and palatability attributes and flavor-related metabolites of pork loins[J].Foods,2021,10(10):2503. [57] 王秀娟.影响肉牛肉质表观特性的关键基因及代谢通路研究[D].北京:中国农业科学院,2022. WANG X J.Investigation on key genes and metabolic pathways regulating beef cattle meat quality apparent characteristics[D].Beijing:Chinese Academy of Agricultural Sciences,2022.(in Chinese) [58] MENG X,GAO Z,LIANG Y,et al.Longissimus dorsi muscle transcriptomic analysis of Simmental and Chinese native cattle differing in meat quality[J].Frontiers in Veterinary Science,2020,7:601064. [59] DU L,CHANG T,AN B,et al.Transcriptome profiling analysis of muscle tissue reveals potential candidate genes affecting water holding capacity in Chinese Simmental beef cattle[J].Scientific Reports,2021,11(1):11897. [60] YU Q,TIAN X,SUN C,et al.Comparative transcriptomics to reveal muscle-specific molecular differences in the early postmortem of Chinese Jinjiang Yellow cattle[J].Food Chemistry,2019,301:125262. [61] 马正旭.安格斯牛肉质性状相关差异表达基因的筛选及PPARD基因功能分析[D].银川:宁夏大学,2020. MA Z X.Screening of differentially expressed genes related to beef quality in Angus and functional analysis of PPARD gene[D].Yinchuan:Ningxia University,2020.(in Chinese) [62] 张唯玉,程 景,许家宝,等.晋南牛SREBP1基因调控前体脂肪细胞分化的研究[J].畜牧兽医学报,2024,55(11):5003-5017. ZHANG W Y,CHENG J,XU J B,et al.Regulation of preadipocyte differentiation by SREBP1 gene in Jinnan cattle[J].Acta Veterinaria et Zootechnica Sinica,2024,55(11):5003-5017.(in Chinese) [63] 蒋金航.牛PPARγ基因调控脂肪细胞增殖和分化的机制研究[D].郑州:河南农业大学,2014. JIANG J H.The study of regulatory mechanisms of cattle PPARγ in adipocyte proliferation and differentiation[D].Zhengzhou:Henan Agricultural University,2014.(in Chinese) [64] 闫向民.新疆褐牛肉用功能基因筛选及基于转录组和全基因组的群体选育进程分析[D].长春:吉林大学,2020. YAN X M.Meat quality-related genes screening and breeding improvements analysis of Xinjiang Brown cattle based on the transcriptome-whole genome sequencing[D].Changchun:Jilin University,2020.(in Chinese) [65] GÓMEZ J F M,CNSOLO N R B,ANTONELO D S,et al.Impact of cattle feeding strategy on the beef metabolome[J].Metabolites,2022,12(7):640. [66] MOTTRAM D S.Flavour formation in meat and meat products:A review[J].Food Chemistry,1998,62(4):415-424. [67] KIYIMBA F,HARTSON S,ROGERS J,et al.Changes in metabolite and protein expression profiles of atypical dark-cutting and normal-pH beef[J].Journal of Animal Science,2021,99(Supplement_2):16. [68] UEDA S,YAMANOUE M,SIRAI Y,et al.Exploring the characteristic aroma of beef from Japanese Black cattle (Japanese Wagyu) via sensory evaluation and gas chromatography-olfactometry[J].Metabolites,2021,11(1):56. [69] KRUSINSKI L,MACIEL I C F,VAN VLIET S,et al.Fatty acids and secondary metabolites can predict grass-finished beef and supplemental cattle feeds[J].NPJ Science of Food,2024,8(1):73. [70] KRAUSKOPF M M,ANTONELO D S,DE ARA AU'G JO C D L,et al.Influence of lipid and metabolite profiles of mitochondrial fraction on pH and color stability of longissimus lumborum muscle with different ultimate beef pH[J].Meat Science,2025,219:109682. [71] HUFF-LONERGAN E,LONERGAN S M.Mechanisms of water-holding capacity of meat:The role of postmortem biochemical and structural changes[J].Meat Science,2005,71(1):194-204. [72] D’ALESSANDRO A,MARROCCO C,RINALDUCCI S,et al.Chianina beef tenderness investigated through integrated omics[J].Journal of Proteomics,2012,75(14):4381-4398. [73] 李光辉.延边牛肉质和风味性状多维组学分析及遗传机制研究[D].长春:吉林大学,2024. LI G H.Multi-omics analysis and genetic mechanism research on the meat quality and flavor traits in Yanbian cattle[D].Changchun:Jilin University,2024.(in Chinese) [74] 孙 斌,崔 岩,王伟利,等.延边黄牛臀肉与眼肉组织非靶向代谢组学比较分析[J].吉林农业大学学报,2023,45(4):451-460. SUN B,CUI Y,WANG W L,et al.Comparative analysis of non-targeted metabolomics between rump and eye tissues of Yanbian Yellow cattle[J].Journal of Jilin Agricultural University,2023,45(4):451-460.(in Chinese) [75] LEGAKO J F,BROOKS J C,O’QUINN T G,et al.Consumer palatability scores and volatile beef flavor compounds of five USDA quality grades and four muscles[J].Meat Science,2015,100:291-300. [76] NEETHLING J,HOFFMAN L C,MULLER M.Factors influencing the flavour of game meat:A review[J].Meat Science,2016,113:139-153. [77] 张 润,杨 曼,王立贤,等.畜禽肉中代谢物质对肉品质的影响及相关基因研究进展[J].畜牧兽医学报,2022,53(8):2444-2452. ZHANG R,YANG M,WANG L X,et al.Research progress of effects of metabolic substances in meat of livestock and poultry on meat quality and the related genes[J].Acta Veterinaria et Zootechnica Sinica,2022,53(8):2444-2452.(in Chinese) [78] JAYASENA D D,AHN D U,NAM K C,et al.Flavour chemistry of chicken meat:A review[J].Asian-Australasian Journal of Animal Sciences,2013,26(5):732-742. [79] WANG Z,AN X,YANG Y,et al.Comprehensive analysis of the longissimus dorsi transcriptome and metabolome reveals the regulatory mechanism of different varieties of meat quality[J].Journal of Agricultural and Food Chemistry,2023,71(2):1234-1245. [80] YU H,YU S,GUO J,et al.Comprehensive analysis of transcriptome and metabolome reveals regulatory mechanism of intramuscular fat content in beef cattle[J].Journal of Agricultural and Food Chemistry,2024,72(6):2911-2924. [81] CARRILLO J A,HE Y,LI Y,et al.Integrated metabolomic and transcriptome analyses reveal finishing forage affects metabolic pathways related to beef quality and animal welfare[J].Scientific Reports,2016,6:25948. [82] YU H,WANG J,ZHANG K,et al.Integrated multi-omics analysis reveals variation in intramuscular fat among muscle locations of Qinchuan cattle[J].BMC Genomics,2023,24(1):367. [83] CHI J,SHU J,LI M,et al.Artificial intelligence in metabolomics:A current review[J].Trends in Analytical Chemistry,2024,178:117852. [84] REEL P S,REEL S,PEARSON E,et al.Using machine learning approaches for multi-omics data analysis:A review[J].Biotechnology Advances,2021,49:107739. [85] PICARD M,SCOTT-BOYER M P,BODEIN A,et al.Integration strategies of multi-omics data for machine learning analysis[J].Computational and Structural Biotechnology Journal,2021,19:3735-3746. [86] HELMY M,SMITH D,SELVARAJOO K.Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering[J].Metabolic Engineering Communications,2020,11:e00149. [87] JANG W D,KIM G B,KIM Y,et al.Applications of artificial intelligence to enzyme and pathway design for metabolic engineering[J].Current Opinion in Biotechnology,2022,73:101-107. |