| [1] |
TANG F, BARBACIORU C, WANG Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nature Methods, 2009, 6(5): 377-382.
|
| [2] |
张恒. L1-siRNAs在猪早期胚胎中的功能研究及猪早期胚胎单细胞转录组分析[D]. 哈尔滨:东北农业大学,2019.
|
|
ZHANG H. Functional study of L1-siRNAs and single cell transcriptome analysis in porcine preimplantation embryos[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese)
|
| [3] |
CAI C C, WAN P, WANG H, et al. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing[J]. Cell Proliferation, 2023, 56(9):e13430.
|
| [4] |
SUN F Y, LI H Y, SUN D Q, et al. Single-cell omics: Experimental workflow, data analyses and applications[J]. Science China Life Sciences, 2025, 68(1):5-102.
|
| [5] |
ZIEGENHAIN C, VIETH B, PAREKH S, et al. Comparative analysis of single-cell RNA sequencing methods[J]. Molecular Cell, 2017, 65(4):631-643.
|
| [6] |
KIVIOJA T, ANNA V, KARLSSON K, et al. Counting absolute numbers of molecules using unique molecular identifiers[J]. Nature Methods, 2012, 9(1):72-74.
|
| [7] |
ISLAM S, KJALLQUIST U, MOLINER A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-Seq[J]. Genome Research, 2011, 21(7):1160-1167.
|
| [8] |
HASHIMSHONY T, WAGNER F, SHER N, et al. CEL-Seq: Single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Reports, 2012, 2(3):666-673.
|
| [9] |
KLEIN A, MAZUTIS L, AKARTUNA I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5):1187-1201.
|
| [10] |
MACOSKO E Z, BASU A, SATIJA R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter Droplets[J]. Cell, 2015, 161(5):1202-1214.
|
| [11] |
SHENG K, CAO W, NIU Y, et al. Effective detection of variation in single-cell transcriptomes using MATQ-Seq[J]. Nature Methods, 2017, 14(3):267-270.
|
| [12] |
NIU M, CAO W, WANG Y, et al. Droplet-based transcriptome profiling of individual synapses[J]. Nature Biotechnology, 2023, 41(9):1332-1344.
|
| [13] |
XU Z, ZHANG T, CHEN H, et al. High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-Seq[J]. Nature Communications, 2023, 14(1):2734.
|
| [14] |
XU Z, WANG Y, SHENG K, et al. Droplet-based high-throughput single microbe RNA sequencing by smRandom-Seq[J]. Nature Communications, 2023, 14(1):5130.
|
| [15] |
FAN H C, FU G K, FODOR S P A. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry[J]. Science, 2015, 347(622):1258367.
|
| [16] |
MRAHN T M, WADSWORH M H, HUGHES T K, et al. Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput[J]. Nature Methods, 2017, 14(4):395-398.
|
| [17] |
HAN X P, WANG R Y, ZHOU Y C,et al. Mapping the mouse cell atlas by Microwell-Seq[J]. Cell,2018,173(5):1307.
|
| [18] |
CAO J Y, PACKER J S, RAMANI V,et al.Comprehensive single-cell transcriptional profiling of a multicellular organism[J]. Science, 2017, 357(6352):661-667.
|
| [19] |
ALEXANDER B R, CHARLES M R, RICHARD A M,et al.Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 2018, 360(6385):176-182.
|
| [20] |
CHEN C, XING D, TAN L, et al. Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI)[J]. Science, 2017, 356(6334):189-194.
|
| [21] |
SUN D, GUAN X, MORAN A E, et al. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data[J]. Nature Biotechnology, 2022, 40(4):527-538.
|
| [22] |
LAKS E, MCPHERSON A, ZAHN H, et al. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing[J]. Cell, 2019, 179(5):1207-1221.
|
| [23] |
YU X Y, RUAN W D, LIN F H, et al. Digital microfluidics-based digital counting of single-cell copy number variation (dd-scCNV Seq)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(20):e2221934120.
|
| [24] |
VISTAIN L F, TAY S. Single-cell proteomics[J]. Trends in Biochemical Sciences, 2021, 46(8):661-672.
|
| [25] |
BIANCHI A, SCHERER M, ZAURIN R, et al. scTAM-Seq enables targeted high-confidence analysis of DNA methylation in single cells[J]. Genome Biology, 2022, 23(1):229.
|
| [26] |
ALAN P B, JUSTIN G, GREGORY E C, et al.F-Seq: A feature density estimator for high-throughput sequence tags[J]. Bioinformatics, 2008, 24(21):2537-2538.
|
| [27] |
JIN W, TANG Q, WAN M, et al. Genome-wide detection of DNase Ⅰ hypersensitive sites in single cells and FFPE tissue samples[J]. Nature, 2015, 528(7580):142-146.
|
| [28] |
JASON D B, WU B J, ULRIKE M L, Single-cell chromatin accessibility reveals principles of regulatory variation[J],Nature, 2015,523(7561):486-490.
|
| [29] |
LAREAU C A, DUARTE F M, CHEW J G, et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility[J]. Nature Biotechnology, 2019, 37(8):916-924.
|
| [30] |
STOECKIUS M, HAFEMEISTER C, STEPHENSON W, et al. Simultaneous epitope and transcriptome measurement in single cells[J]. Nature Methods, 2017, 14(9):865-868.
|
| [31] |
WANG Y, GUAN Z Y, SHI S W, et al. Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a mammalian cell[J]. Nature Communications, 2024, 15(1):1279.
|
| [32] |
AMANTONICO A, URBAN P L, FAGERER S R, et al. Single-cell, MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms[J]. Analytical Chemistry, 2010, 82(17):7394-7400.
|
| [33] |
IBANEZ A J, FAGERER S R, SCHMIDT A M, et al. Masspectrometry-based metabolomics of single yeast cell[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22):8790-8794.
|
| [34] |
LI L, GARDEN R W, SWEEDLER J V. Single-cell MALDI: A new tool for directpeptide profiling[J]. Trends in Biotechnology, 2000, 18(4): 151-160.
|
| [35] |
NORTHEN T R, YANES O, NORTHEN M T, et al. Clathratenano structures for masspectrometry[J]. Nature, 2007, 449(7165):1033-1036.
|
| [36] |
WALKER B N, STOLEE J A, VERTE S A. Nanophotonicionization for ultra trace and single-cell analysis by mass spectrometry [J]. Analytical Chemistry, 2012, 84(18): 7756-7762.
|
| [37] |
LI J H, XING S Y, ZHAO G P, et al. Identification of diverse cell populations in skeletal muscles and biomarkers for intramuscular fat of chicken by single-cell RNA sequencing[J]. BMC Genomics, 2020, 21(1): 52.
|
| [38] |
CHO D S, SCHMITT R E, DASGUPTA, et al. Single-cell deconstruction of post-sepsis skeletal muscle and adipose tissue microenvironments[J]. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11(5): 1351-1363.
|
| [39] |
WU Y Q, JIN D P, QIN B Y, et al. Research progress on the effects of MyoD-related non-coding RNAs on muscle growth and development[J]. Chinese Bulletin of Life Sciences, 2020, 32(1): 29-37.
|
| [40] |
LYU P, QI Y M, TU Z J, et al. Single-cell RNA sequencing reveals heterogeneity of cultured bovine satellite cells[J]. Frontiers in Genetics, 2021, 12:742077.
|
| [41] |
MA L, MENG Y Y, AN Y L, et al. Single-cell RNA-Seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling[J]. Journal of Cachexia, Sarcopenia and Muscle, 2024, 15(4):1388-1403.
|
| [42] |
XIAO W, JIANG N, JI Z, et al. Single-cell RNA sequencing reveals the cellular landscape of longissimus dorsi in a newborn Suhuai pig[J]. The International Journal of Molecular Sciences, 2024, 25(2):1204.
|
| [43] |
QIU K, XU D D, WANG L Q, et al. Association analysis of single-cell RNA sequencing and proteomics reveals a vital role of Ca2+ signaling in the determination of skeletal muscle development potential[J]. Cells, 2020, 9(4):1045.
|
| [44] |
FEREGRINO C, SCACHER F, PARNAS O, et al. A single-cell transcriptomic atlas of the developing chicken limb[J]. BMC Genomics, 2019, 20(1): 401.
|
| [45] |
张卫东, 郑玉杰, 葛伟, 等. 单细胞测序对绒山羊毛乳头细胞的鉴定[J]. 中国农业科学, 2022, 55(12):2436-2446.
|
|
ZHANG W D, ZHENG Y J, GE W, et al. Identification of cashmere dermal papilla cells based on single-cell RNA sequencing technology[J]. Scientia Agricultura Sinica, 2022, 55(12):2436-2446. (in Chinese)
|
| [46] |
葛伟. 单细胞分辨率解析绒山羊及小鼠毛囊发生的转录调控机制[D]. 杨凌:西北农林科技大学, 2020.
|
|
GE W. Dissecting the transcriptional regulatory mechanism underlying cashmere goat and murine hair follicle morphogenesis at single-cell resolution[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
|
| [47] |
刘泽昊. 单细胞测序解析辽宁绒山羊初级与次级毛囊的转录组图谱与分子特征[D]. 沈阳:沈阳农业大学, 2023.
|
|
LIU Z H. Single-cell sequencing reveals that transcriptome mapand molecular features of primary and secondary hair follicles in Liaoning cashmere goats[D]. Shenyang: Shenyang Agricultural University,2023. (in Chinese)
|
| [48] |
WANG S H, WU T Y, SUN J Y, et al. Single-cell transcriptomics reveals the molecular anatomy of sheep hair follicle heterogeneity and wool curvature[J]. Frontiers in Cell and Developmental Biology, 2021, 9:800157.
|
| [49] |
郝旭旭. 单细胞分辨率解析陕北白绒山羊胚胎期毛囊的转录组图谱与分子特征[D]. 杨凌:西北农林科技大学, 2024.
|
|
HAO X X. Dissecting the transcriptional atlas and molecular characteristics of embryonic hair follicles of Shaanbei White cashmere goat at single-cell resolution[D]. Yangling: Northwest A&F University, 2024. (in Chinese)
|
| [50] |
LI M H, HAO X X, CHENG Z X, et al. The molecular anatomy of cashmere goat hair follicle during cytodifferentiation stage[J]. BMC Genomics, 2024, 25(1):961.
|
| [51] |
高桂珍. 基于单细胞RNA测序技术构建阿尔巴斯绒山羊初级与次级毛囊转录组图谱的研究[D]. 呼和浩特: 内蒙古大学, 2024.
|
|
GAO G Z. Construction of transcriptome maps of primary and secondary hair follicles in albas cashmere goat using single cell RNA sequencing technology[D]. Hohhot: Inner Mongolia University, 2024. (in Chinese)
|
| [52] |
MELSER A L, VENIAMINOVA N A, LULL M V, et al. Hair follicle terminal differentiation is orchestrated by distinct early and late matrix progenitors[J]. Cell Reports, 2017, 19(4):809-821.
|
| [53] |
WANG Y, JIANG Y, NI G Y, et al. Integrating single-cell and spatial transcriptomics reveals heterogeneity of early pig skin development and a subpopulation with hair placode formation[J]. Advanced Science (Weinheim), 2024, 11(20): e2306703.
|
| [54] |
叶娜. 基于单细胞转录组测序对天祝白牦牛生长期毛囊转录图谱的构建[D]. 兰州:西北民族大学, 2021.
|
|
YE N. Construction of transcription map of hair follicles in growing period of Tianzhu White yak based on single cell transcriptome sequencing[D]. Lanzhou: Northwest Minzu University, 2021. (in Chinese)
|
| [55] |
ARBORE R, BARBOSA S, BREJCHA J, et al. A molecular mechanism for bright color variation in parrots[J]. Science, 2024, 386(6721):7710.
|
| [56] |
YANG H, MA J Y, WAN Z, et al. Characterization of sheep spermatogenesis through single-cell RNA sequencing[J]. FASEB Journal, 2021, 35(2): e21187.
|
| [57] |
ZHANG L K, MA H D, GUO M, et al. Dynamic transcriptional atlas of male germ cells during porcine puberty[J]. Zoological Research, 2022, 43(4):600-603.
|
| [58] |
ZHENG Y, GAO Q, LI T J, et al. Sertoli cell and spermatogonial development in pigs[J]. Journal of Animal Science and Biotechnology, 2022, 13(1): 45.
|
| [59] |
ZHANG, L K, GUO M, LIU Z D, et al. Single-cell RNA-Seq analysis of testicular somatic cell development in pigs[J]. Journal of Genetics and Genomics, 2022, 49(11), 1016-1028.
|
| [60] |
高源. 安格斯牛睾丸组织非编码RNA鉴定及单细胞转录图谱绘制[D]. 杨凌:西北农林科技大学, 2021.
|
|
GAO Y. Non-coding RNA identification and single-cell transcriptome atlas of Angus bull testis[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
|
| [61] |
HUANG L F, ZHANG J J, ZHANG P F, et al. Single-cell RNA sequencing uncovers dynamic roadmap and cell-cell communication during buffalo spermatogenesis[J]. iScience, 2023, 26(1): 105733.
|
| [62] |
WANG X D, PEI J, XIONG L, et al. Single-cell RNA sequencing reveals atlas of yak testis cells[J]. International Journal of Molecular Sciences, 2023, 24(9):7982.
|
| [63] |
LAVAGI I, KREBS S, SIMMET K, et al. Single-cell RNA sequencing reveals developmental heterogeneity of blastomeres during major genome activation in bovine embryos[J]. Scientific Reports, 2018, 8(1): 4071.
|
| [64] |
王杰. 基于单细胞转录组和单细胞蛋白质组测序技术研究牛早期雌雄胚胎发育差异[D]. 阿拉尔:塔里木大学, 2025.
|
|
WANG J. Study on differences in embryonic development between males and females before implantation in cattle on the basis of single-cell transcriptome and single-cell proteome sequencing[D]. Alar: Tarim University, 2025. (in Chinese)
|