[1] CENDRON F,LEDESMA-RODRÍGUEZ A,MASTRANGELO S,et al.Genome-wide analysis of the Siboney de Cuba cattle breed:Genetic characterization and framing with cattle breeds worldwide[J].Frontiers in Genetics,2024,15:1302580. [2] 蔡新宇,毛晓伟,赵毅强.家养动物驯化起源的研究方法与进展[J].生物多样性,2022,30(4):179-196.CAI X Y,MAO X W,ZHAO Y Q.Methods and research progress on the origin of animal domestication[J].Biodiversity Science,2022,30(4):179-196.(in Chinese) [3] 任慧波,朱吉,崔清明,等.猪育种技术研究进展[J].养猪,2020,4:61-64.REN H B,ZHU J,CUI Q M,et al.Advances in pig breeding technologies[J].Swine Production,2020,4:61-64.(in Chinese) [4] 赵俊杰,任中英,章志强,等.分子设计育种在棉花中的应用进展与展望[J].棉花学报,2023,35(5):412-428.ZHAO J J,REN Z Y,ZHANG Z Q,et al.Application and prospect of molecular design breeding in cotton[J].Cotton Science,2023,35(5):412-428.(in Chinese) [5] 杜明,王阿红,冯旗,等.我国作物设计育种体系发展及挑战[J].作物杂志,2024,1:1-7.DU M,WANG A H,FENG Q,et al.Development and challenge of crop breeding by design system in China[J].Crops,2024,1:1-7.(in Chinese) [6] 王文月,米晓钰,孙康泰,等.畜禽重要性状遗传调控机制与分子设计育种[J].中国农业科技导报,2022,24(12):39-47.WANG W Y,MI X Y,SUN K T,et al.Genetic regulation mechanisms of important traits and molecular design breeding in livestock and poultry[J].Journal of Agricultural Science and Technology,2022,24(12):39-47.(in Chinese) [7] 马爱平.聚焦国家重点研发计划之农业领域[N].科技日报,2016-12-26.MA A P.Focusing on the national key R&D program in the agricultural field[N].Science and Technology Daily,2016-12-26.(in Chinese) [8] 闫文浩,张姝梦,王文静,等.代谢组学技术在猪肉质性状研究中的应用进展[J].现代食品科技,2024(网络首发).YAN W H,ZHANG S M,WANG W J,et al.Application progress of metabolomics in the study of meat quality traits in pigs[J]. Modern Food Science and Technology,2024.Epub ahead of print. (in Chinese) [9] ZHONG Z Q,LI R,WANG Z,et al.Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance[J].Animal,2023,17(7):100882. [10] SONG Q,HOU Y,ZHANG Y,et al.Integrated multi-omics approach revealed cellular senescence landscape[J].Nucleic Acids Research,2022,50(19):10947-10963. [11] ROSOFF D B,MAVROMATIS L A,BELL A S,et al.Multivariate genome-wide analysis of aging-related traits identifies novel loci and new drug targets for healthy aging[J].Nature Aging,2023,3(8):1020-1035. [12] SHARMA T R,DEVANNA B N,KIRAN K,et al.Status and prospects of next generation sequencing technologies in crop plants[J].Current Issues in Molecular Biology,2018,27:1-36. [13] SHENDURE J,BALASUBRAMANIAN S,CHURCH G M,et al.DNA sequencing at 40:Past,present and future[J].Nature,2017,550(7676):345-353. [14] ALKAN C,COE B P,EICHLER E E.Genome structural variation discovery and genotyping[J].Nature Reviews Genetics,2011,12(5):363-376. [15] CASILLAS S,BARBADILLA A.Molecular population genetics[J].Genetics,2017,205(3):1003-1035. [16] WANG Z,GERSTEIN M,SNYDER M.RNA-Seq:A revolutionary tool for transcriptomics[J].Nature Reviews Genetics,2009,10(1):57-63. [17] ZHANG H,LIU Z,HU A,et al.Full-length transcriptome analysis of the halophyte Nitraria sibirica Pall[J].Genes (Basel),2022,13(4):661. [18] BLUDAU I,AEBERSOLD R.Proteomic and interactomic insights into the molecular basis of cell functional diversity[J].Nature Reviews Molecular Cell Biology,2020,21(6):327-340. [19] PENG D,LIU T,LU H,et al.Intranasal delivery of engineered extracellular vesicles loaded with miR-206-3p antagomir ameliorates Alzheimer’s disease phenotypes[J].Theranostics,2024,14(19):7623-7644. [20] DUONG V A,LEE H.Bottom-up proteomics:Advancements in sample preparation[J].International Journal of Molecular Sciences,2023,24(6):5350. [21] MILLER R M,SMITH L M.Overview and considerations in bottom-up proteomics[J].Analyst,2023,148(3):475-486. [22] BRODBELT J S.Deciphering combinatorial post-translational modifications by top-down mass spectrometry[J].Current Opinion in Chemical Biology,2022,70:102180. [23] DUNN W B,BROADHURST D I,ATHERTON H J,et al.Systems level studies of mammalian metabolomes:The roles of mass spectrometry and nuclear magnetic resonance spectroscopy[J].Chemical Society Reviews,2011,40(1):387-426. [24] HUANG H,CHEN Y,XU W,et al.Decoding aging clocks:New insights from metabolomics[J].Cell Metabolism,2025,37(1):34-58.. [25] PATTI G J,YANES O,SIUZDAK G.Innovation:Metabolomics:The apogee of the omics trilogy[J].Nature Reviews Molecular Cell Biology,2012,13(4):263-269. [26] ALLIS C D,JENUWEIN T.The molecular hallmarks of epigenetic control[J].Nature Reviews Genetics,2016,17(8):487-500. [27] WANG Y,JIANG Y,NI G,et al.Integrating single-cell and spatial transcriptomics reveals heterogeneity of early pig skin development and a subpopulation with hair placode formation[J].Advanced Science,2024,11(20):e2306703. [28] XU D,WAN B,QIU K,et al.Single-cell RNA-sequencing provides insight into skeletal muscle evolution during the selection of muscle characteristics[J].Advanced Science,2023,10(35):e2305080. [29] WANG F,DING P,LIANG X,et al.Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level[J].Nature Communications,2022,13(1):3620. [30] PURCELL S,NEALE B,TODD-BROWN K,et al.PLINK:A tool set for whole-genome association and population-based linkage analyses[J].American Journal of Human Genetics,2007,81(3):559-575. [31] RETIEF J D.Phylogenetic analysis using PHYLIP[J].Methods in Molecular Biology,2000,132:243-258. [32] KUMAR S,STECHER G,LI M,et al.Mega X:Molecular evolutionary genetics analysis across computing platforms[J].Molecular Biology and Evolution,2018,35(6):1547-1549. [33] LETUNIC I,BORK P.Interactive Tree of Life (iTOL) v5:An online tool for phylogenetic tree display and annotation[J].Nucleic Acids Research,2021,49(W1):W293-W296. [34] RINGNÉR M.What is principal component analysis?[J].Nature Biotechnology,2008,26(3):303-304. [35] PRITCHARD J K,STEPHENS M,DONNELLY P.Inference of population structure using multilocus genotype data[J].Genetics,2000,155(2):945-959. [36] ALEXANDER D H,NOVEMBRE J,LANGE K.Fast model-based estimation of ancestry in unrelated individuals[J].Genome Research,2009,19(9):1655-1664. [37] RAJ A,STEPHENS M,PRITCHARD J K.fastSTRUCTURE:Variational inference of population structure in large SNP data sets[J].Genetics,2014,197(2):573-589. [38] FRANCIS R M.POPHELPER:An R package and Web App to analyse and visualize population structure[J].Molecular Ecology Resources,2017,17(1):27-32. [39] PICKRELL J K,PRITCHARD J K.Inference of population splits and mixtures from genome-wide allele frequency data[J].PLoS Genetics,2012,8(11):e1002967. [40] LACY R C,ALAKS G,WALSH A.Evolution of Peromyscus leucopus mice in response to a captive environment[J].PLoS One,2013,8(8):e72452. [41] WILLIS J H.Effects of different levels of inbreeding on fitness components in Mimulus guttatus[J].Evolution,1993,47(3):864-876. [42] FRANKHAM R.Inbreeding and extinction:A threshold effect[J].Conservation Biology,1995,9(4):792-799. [43] DANECEK P,AUTON A,ABECASIS G,et al.The variant call format and VCFtools[J].Bioinformatics,2011,27(15):2156-2158. [44] LIU S,HANSEN M M.PSMC (pairwise sequentially Markovian coalescent) analysis of RAD (restriction site associated DNA) sequencing data[J].Molecular Ecology Resources,2017,17(4):631-641. [45] TERHORST J,KAMM J A,SONG Y S.Robust and scalable inference of population history from hundreds of unphased whole genomes[J].Nature Genetics,2017,49(2):303-309. [46] SCHIFFELS S,WANG K.MSMC and MSMC2:The multiple sequentially Markovian coalescent[J].Methods in Molecular Biology,2020,2090:147-166. [47] CHEN N,CAI Y,CHEN Q,et al.Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J].Nature Communications,2018,9(1):2337. [48] KIM D,PAGGI J M,PARK C,et al.Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J].Nat Biotechnology,2019,37(8):907-915. [49] DOBIN A,DAVIS C A,SCHLESINGER F,et al.STAR:Ultrafast universal RNA-Seq aligner[J].Bioinformatics,2013,29(1):15-21. [50] PERTEA M,PERTEA G M,ANTONESCU C M,et al.StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads[J].Nature Biotechnology,2015,33(3):290-295. [51] LIAO Y,SMYTH G K,SHI W.featureCounts:An efficient general purpose program for assigning sequence reads to genomic features[J].Bioinformatics,2014,30(7):923-930. [52] LOVE M I,HUBER W,ANDERS S.Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J].Genome Biology,2014,15(12):550. [53] DENNIS G,JR.,SHERMAN B T,HOSACK D A,et al.DAVID:Database for annotation,visualization,and integrated discovery[J].Genome Biology,2003,4(5):P3. [54] ZENG H,ZHANG W,LIN Q,et al.PigBiobank:A valuable resource for understanding genetic and biological mechanisms of diverse complex traits in pigs[J].Nucleic Acids Research,2024,52(D1):D980-D989. [55] SHABALIN A A.Matrix eQTL:Ultra fast eQTL analysis via large matrix operations[J].Bioinformatics,2012,28(10):1353-1358. [56] RITCHIE M E,PHIPSON B,WU D,et al.Limma powers differential expression analyses for RNA-sequencing and microarray studies[J].Nucleic Acids Research,2015,43(7):e47. [57] SZKLARCZYK D,KIRSCH R,KOUTROULI M,et al.The STRING database in 2023:Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J].Nucleic Acids Research,2023,51(D1):D638-D646. [58] SHANNON P,MARKIEL A,OZIER O,et al.Cytoscape:A software environment for integrated models of biomolecular interaction networks[J].Genome Research,2003,13(11):2498-2504. [59] SMITH C A,WANT E J,O’MAILLE G,et al.XCMS:Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment,matching,and identification[J].Analytical Chemistry,2006,78(3):779-787. [60] CHONG J,WISHART D S,XIA J.Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis[J].Current Protocols in Bioinformatics,2019,68(1):e86. [61] WISHART D S,GUO A,OLER E,et al.HMDB 5.0:The human metabolome database for 2022[J].Nucleic Acids Research,2022,50(D1):D622-D631. [62] CHEN N,XIA X,HANIF Q,et al.Global genetic diversity,introgression,and evolutionary adaptation of indicine cattle revealed by whole genome sequencing[J].Nature Communications,2023,14(1):7803. [63] YANG L,YIN H,BAI L,et al.Mapping and functional characterization of structural variation in 1060 pig genomes[J].Genome Biology,2024,25(1):116. [64] JIN L,TANG Q,HU S,et al.A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription[J].Nature Communications,2021,12(1):3715. [65] VALDÉS-HERNÁNDEZ J,FOLCH J M,CRESPO-PIAZUELO D,et al.Identification of candidate regulatory genes for intramuscular fatty acid composition in pigs by transcriptome analysis[J].Genetics,Selection,Evolution,2024,56(1):12. [66] LIU G,LI L,LIU S,et al.Characterization of serum proteomic and inflammatory profiling at early stage of iron deficiency in weaned piglets[J].Animal Nutrition,2024,18:380-389. [67] ZHAO H,LI M,ZHU Q,et al.Label-free quantitative proteomic analysis of milk fat globule membrane proteins in porcine colostrum and mature milk[J].Food Chemistry,2023,426:136447. [68] YU Q,LIU S,LIU Q,et al.Meat exudate metabolomics reveals the impact of freeze-thaw cycles on meat quality in pork loins[J].Food Chemistry:X,2024,24:101804. [69] BOVO S,MAZZONI G,GALIMBERTI G,et al.Metabolomics evidences plasma and serum biomarkers differentiating two heavy pig breeds[J].Animal,2016,10(10):1741-1748. [70] TENG J,GAO Y,YIN H,et al.A compendium of genetic regulatory effects across pig tissues[J].Nature Genetics,2024,56(1):112-123. [71] YU T,TIAN X,LI D,et al.Transcriptome,proteome and metabolome analysis provide insights on fat deposition and meat quality in pig[J].Food Research International,2023,166:112550. [72] LIU L,YI G,YAO Y,et al.Multiomics analysis reveals signatures of selection and loci associated with complex traits in pigs[J].iMeta,2024,3(6):e250. [73] SHEN L,BAI X,ZHAO L,et al.Integrative 3D genomics with multi-omics analysis and functional validation of genetic regulatory mechanisms of abdominal fat deposition in chickens[J].Nature Communications,2024,15(1):9274. [74] ZHAO Y,HOU Y,XU Y,et al.A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome[J].Nature Communications,2021,12(1):2217. [75] WU H,LUO L Y,ZHANG Y H,et al.Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits[J].Nature Communications,2024,15(1):10041. [76] LUO L Y,WU H,ZHAO L M,et al.Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness[J].Nature Genetics,2025,57(1):218-230. [77] ZHANG L,YU Y,SHI T,et al.Genome-wide analysis of expression quantitative trait loci (eQTLs) reveals the regulatory architecture of gene expression variation in the storage roots of sweet potato[J].Horticulture Research,2020,7(1):90. [78] ZHANG D,CHENG J,LI X,et al.Comprehensive multi-tissue epigenome atlas in sheep:A resource for complex traits,domestication,and breeding[J].iMeta,2024,3(6):e254. [79] SUN Z,ZHANG B,ZHOU J,et al.Integrated single-cell RNA-Seq and ATAC-Seq reveals heterogeneous differentiation of CD4(+) naive T cell subsets is associated with response to antidepressant treatment in major depressive disorder[J].Advanced Science,2024,11(30):e2308393. |