| [1] |
DE KORT H, PRUNIER J G, DUCATEZ S, et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations[J]. Nature Communications, 2021, 12(1): 516.
|
| [2] |
DEPARDIEU C, GIRARDIN M P, NADEAU S, et al. Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate[J]. New Phytologist, 2020, 227(2):427-439.
|
| [3] |
LIMA J S, BALLESTEROS-MEJIA L, LIMA-RIBEIRO M S, et al. Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species[J]. Global Change Biology, 2017, 23(11):4639-4650.
|
| [4] |
BELLARD C, BERTELSMEIER C, LEADLEY P, et al. Impacts of climate change on the future of biodiversity[J]. Ecology Letters, 2012, 15(4):365-377.
|
| [5] |
STORZ J F. High-altitude adaptation: Mechanistic insights from integrated genomics and physiology[J]. Molecular Biology and Evolution, 2021, 38(7):2677-2691.
|
| [6] |
WU D D, YANG C P, WANG M S, et al. Convergent genomic signatures of high-altitude adaptation among domestic mammals[J]. National Science Review, 2020, 7(6):952-963.
|
| [7] |
SEJIAN V, BHATTA R, GAUGHAN J B, et al. Review: Adaptation of animals to heat stress[J]. Animal, 2018, 12(s2):s431-s444.
|
| [8] |
任晓镤, 李明杨, 杨艳玲, 等.新疆多浪羊与其他地方品种羊肉贮藏特性比较[J]. 食品与发酵工业, 2017, 43(8):262-266.
|
|
REN X P, LI M Y, YANG Y L, et al. Comparison of storage characteristics of Duolang sheep in Xinjiang and other local breeds of mutton[J]. Food and Fermentation Industries, 2017, 43(8):262-266. (in Chinese)
|
| [9] |
李明洋, 郁万瑞, 陈亚飞, 等. 不同生长阶段多浪羊肌肉氨基酸含量分析[J].吉林畜牧兽医, 2023, 44(1):1-3.
|
|
LI M Y, YU W R, CHEN Y F, et al. Analysis of amino acid content of muscles of multi-way sheep at different growth stages[J]. Jilin Animal Husbandry and Veterinary Medicine, 2023, 44(1):1-3. (in Chinese)
|
| [10] |
李超旭. 湖羊高效饲养与疫病防控的技术要点[J].畜牧兽医科技信息, 2019, 10:91.
|
|
LI C X. Technical points for efficient feeding of lake sheep and prevention and control of epidemics[J]. Information on Animal Husbandry and Veterinary Science and Technology, 2019, 10:91. (in Chinese)
|
| [11] |
CHEN T, WANG L, LI Q, et al. Functional probiotics of lactic acid bacteria from Hu sheep milk[J]. BMC Microbiology, 2020, 20(1):228.
|
| [12] |
BETANCUR-MURILLO C L, AGUILAR-MARÍN S B, JOVEL J. Prevotella: A key player in ruminal metabolism[J]. Microorganisms, 2022, 11(1):1.
|
| [13] |
ZHANG Y K, ZHANG X X, LI F D, et al. Characterization of the rumen microbiota and its relationship with residual feed intake in sheep[J]. Animal, 2021, 15(3):100161.
|
| [14] |
WANG Y, CAO P, WANG L, et al. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep[J]. Applied Microbiology and Biotechnology, 2017, 101(9):3717-3728.
|
| [15] |
DERAKHSHANI H, TUN H M, CARDOSO F C, et al. Linking peripartal dynamics of ruminal microbiota to dietary changes and production parameters[J]. Frontiers in Microbiology, 2017, 7:2143.
|
| [16] |
YANG F, HENNIGER M T, IZZO A S, et al. Performance improvements and increased ruminal microbial interactions in Angus heifers via supplementation with native rumen bacteria during high-grain challenge[J]. Scientific Reports, 2025, 15(1):2289.
|
| [17] |
BAINBRIDGE M L, CERSOSIMO L M, WRIGHT A D, et al. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters[J]. FEMS Microbiology Ecology, 2016, 92(5):fiw059.
|
| [18] |
MCCANN J C, WILEY L M, FORBES T D, et al. Relationship between the rumen microbiome and residual feed intake-efficiency of Brahman bulls stocked on bermudagrass pastures[J]. PLoS One, 2014, 9(3):e91864.
|
| [19] |
ARRUDA A P, DA-SILVA W S, CARVALHO D P, et al. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase[J]. Biochemical Journal, 2003, 375(Pt 3):753-760.
|
| [20] |
HERNANDEZ-CARRETERO A, WEBER N, LABARGE S A, et al. Cysteine- and glycine-rich protein 3 regulates glucose homeostasis in skeletal muscle[J]. American Journal of Physiology,2018,315(2):E267-E278.
|
| [21] |
郑 言, 曹中赞, 邱云桥, 等. 脂联素与其受体的结构及在脂类代谢中的作用机制[J]. 动物营养学报, 2022, 34(6):3503-3510.
|
|
ZHENG Y, CAO Z Z, QIU Y Q, et al. The structure of adiponectin and its receptors and its mechanism of action in lipid metabolism[J]. Chinese Journal of Animal Nutrition, 2022, 34(6):3503-3510. (in Chinese)
|
| [22] |
李付娟, 王帅, 朱亚楠, 等. ADIPOQ shRNA在猪前体脂肪细胞中转染体系的优化[J].中国兽医学报, 2013, 33(4):616-626.
|
|
LI F J, WANG S, ZHU Y N, et al. Optimization of transfection system of ADIPOQ shRNA in pig precursor adipocytes[J]. Chinese Veterinary Medicine Journal, 2013, 33(4):616-626. (in Chinese).
|
| [23] |
LIN H, LIAN W S, CHEN H H, et al. Adiponectin ameliorates iron-overload cardiomyopathy through the PPARα-PGC-1-dependent signaling pathway[J]. Molecular Pharmacology, 2013, 84(2):275-285.
|
| [24] |
PANT M, BAL N C, PERIASAMY M. Sarcolipin: A key thermogenic and metabolic regulator in skeletal muscle[J]. Trends in Endocrinology and Metabolism, 2016, 27(12):881-892.
|
| [25] |
何丹妮, 周斌, 张小敏, 等. 猪源Mx1基因的原核表达及其抗血清制备[J]. 南京农业大学学报, 2012, 35(1):87-91.
|
|
HE D N, ZHOU B, ZHANG X M, et al. Prokaryotic expression of porcine Mx1 gene and its antiserum preparation[J]. Journal of Nanjing Agricultural University, 2012, 35(1):87-91. (in Chinese)
|
| [26] |
李梦柔, 张健, 董世雄, 等. 藏猪与大约克夏猪Mx1基因的表达差异研究[J]. 高原农业, 2020, 4(2):166-171.
|
|
LI M R, ZHANG J, DONG S X, et al. Study on the expression differences between Mx1 genes of Tibetan pigs and Yorkshire pigs[J]. Plateau Agriculture, 2020, 4(2):166-171. (in Chinese)
|
| [27] |
LEAMAN D W, CHAWLA-SARKAR M, JACOBS B, et al. Novel growth and death related interferon-stimulated genes (ISGs) in melanoma: Greater potency of IFN-beta compared with IFN-alpha2[J]. Journal of Interferon & Cytokine Research, 2003, 23(12):745-756.
|
| [28] |
VIET-NHI N K, MINH QUAN T, CONG TRUC V, et al. Multiomics analysis reveals the IFI6 gene as a prognostic indicator and therapeutic target in esophageal cancer[J]. International Journal of Molecular Sciences, 2024, 25(5):2691.
|