中国畜牧兽医 ›› 2026, Vol. 53 ›› Issue (1): 151-164.doi: 10.16431/j.cnki.1671-7236.2026.01.014
王旭敖(
), 周小栋, 马小婧, 马成艳, 张嘉琦, 黄帅(
)
收稿日期:2025-04-27
出版日期:2026-01-05
发布日期:2025-12-26
通讯作者:
黄帅
E-mail:15769573736@163.com;shuaihuang010@nxu.edu.cn
作者简介:王旭敖,E-mail: 15769573736@163.com
基金资助:
WANG Xuao(
), ZHOU Xiaodong, MA Xiaojing, MA Chengyan, ZHANG Jiaqi, HUANG Shuai(
)
Received:2025-04-27
Online:2026-01-05
Published:2025-12-26
Contact:
HUANG Shuai
E-mail:15769573736@163.com;shuaihuang010@nxu.edu.cn
摘要:
目的 试验旨在研究添加甘草粗多糖(GP)对苜蓿青贮品质、抗氧化活性、微生物群落结构及体外瘤胃发酵参数的影响,为利用当地特色中草药活性成分调制优质苜蓿青贮饲料和开发功能性饲草产品提供理论依据和实践参考。 方法 以初花期紫花苜蓿为试验材料,试验分为4个处理组,每组4个重复,分别在紫花苜蓿中添加0(对照组,CK)、0.5%(GP1)、1.0%(GP2)和1.5%(GP3)甘草粗多糖,青贮60 d后分析苜蓿青贮的营养成分、发酵品质、抗氧化活性、微生物群落结构及体外瘤胃发酵参数。 结果 与CK组相比,①添加甘草粗多糖显著提高了苜蓿青贮的干物质(DM)、粗脂肪(EE)、总多糖(TP)含量,乳酸菌(LAB)数量,总抗氧化能力(T-AOC)、谷胱甘肽过氧化物酶(GSH-Px)活性,以及DDPH活性自由基清除率(P<0.05),显著降低了苜蓿青贮pH和酵母菌数量(P<0.05);GP2和GP3组的可溶性碳水化合物(WSC)、乳酸(LA)含量和超氧化物歧化酶(SOD)活性均显著升高(P<0.05);GP3组的中性洗涤纤维(NDF)和丙酸(PA)含量均显著降低(P<0.05)。②添加甘草粗多糖降低了苜蓿青贮中蓝藻菌门(Cyanobacteria)和未分类蓝藻细菌(unclassified_p_Cyanobacteria)的相对丰度,提高了厚壁菌门(Firmicutes)、蒙氏肠球菌(Enterococcus mundtii)、乳酸片球菌(Pediococcus acidilactici)和植物乳杆菌(Lactiplantibacillus plantarum)的相对丰度;GP2组的旧金山果乳杆菌(Fructilactobacillus sanfranciscensis)的相对丰度明显提高;GP1和GP3组的马胃葡萄球菌(Staphylococcus equorum)和表皮葡萄球菌(Staphylococcus epidermidis)的相对丰度明显提高。相关性分析结果显示,未分类蓝藻细菌相对丰度与pH和酵母菌数目呈显著正相关(P<0.05),而与LA含量和LAB数量呈显著负相关(P<0.05)。植物乳杆菌相对丰度与酵母菌数目呈显著负相关(P<0.05)。③添加甘草粗多糖显著提高了苜蓿青贮的体外干物质消化率(IVDMD)和体外中性洗涤纤维消化率(IVNDFD)(P<0.05)。 结论 本试验条件下,添加甘草粗多糖可提高苜蓿青贮品质、抗氧化活性和体外瘤胃发酵参数,并能提高苜蓿青贮有益菌丰度。综合考虑,添加1.0%甘草粗多糖对苜蓿青贮品质的改善效果最佳。
中图分类号:
王旭敖, 周小栋, 马小婧, 马成艳, 张嘉琦, 黄帅. 甘草粗多糖对苜蓿青贮品质、抗氧化活性、微生物群落结构及体外瘤胃发酵参数的影响[J]. 中国畜牧兽医, 2026, 53(1): 151-164.
WANG Xuao, ZHOU Xiaodong, MA Xiaojing, MA Chengyan, ZHANG Jiaqi, HUANG Shuai. Effects of Glycyrrhiza Crude Polysaccharide on Silage Quality, Antioxidant Activity, Microbial Community Structure, and in vitro Ruminal Fermentation Parameters of Alfalfa Silage[J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(1): 151-164.
表2
添加甘草粗多糖后苜蓿青贮营养成分测定结果"
项目 Items | 组别 Groups | |||
|---|---|---|---|---|
| CK | GP1 | GP2 | GP3 | |
| 干物质 DM/% FM | 35.18±0.16b | 36.85±0.66a | 37.02±0.34a | 37.55±0.34a |
| 粗蛋白质 CP/% DM | 19.24±0.75 | 19.43±0.25 | 19.79±0.52 | 19.96±0.33 |
| 粗脂肪 EE/% DM | 2.59±0.07c | 3.97±0.40b | 4.86±0.38a | 5.28±0.10a |
| 可溶性碳水化合物 WSC/% DM | 3.99±0.25b | 4.42±0.24b | 6.80±0.24a | 7.21±0.75a |
| 中性洗涤纤维 NDF/% DM | 40.77±0.63a | 38.69±0.49a | 37.85±0.49ab | 37.82±0.99b |
| 酸性洗涤纤维 ADF/% DM | 31.61±0.48 | 31.23±0.41 | 30.95±0.80 | 31.24±0.63 |
表3
添加甘草粗多糖后苜蓿青贮发酵品质测定结果"
项目 Items | 组别 Groups | |||
|---|---|---|---|---|
| CK | GP1 | GP2 | GP3 | |
| pH | 5.33±0.04a | 5.04±0.03b | 4.96±0.01b | 5.01±0.02b |
| 氨态氮/总氮 NH3-N/TN/% DM | 1.73±0.23 | 1.55±0.14 | 1.52±0.10 | 1.58±0.09 |
| 乳酸 LA/% DM | 4.10±0.17c | 6.02±0.61bc | 7.35±0.89ab | 8.32±0.71a |
| 乙酸 AA/% DM | 0.70±0.12 | 0.71±0.08 | 0.69±0.06 | 0.68±0.09 |
| 丙酸 PA/% DM | 0.23±0.05a | 0.17±0.01ab | 0.17±0.03ab | 0.10±0.03b |
| 丁酸 BA/% DM | ND | ND | ND | ND |
| 乳酸菌 LAB/(lg CFU/g FM) | 6.68±0.03c | 7.61±0.12b | 7.89±0.10ab | 8.03±0.09a |
| 酵母菌 Yeast/(lg CFU/g FM) | 3.95±0.06a | 3.52±0.17b | 3.44±0.21b | 3.30±0.12b |
| 霉菌 Mold/(lg CFU/g FM) | ND | ND | ND | ND |
表4
添加甘草粗多糖后苜蓿青贮抗氧化活性测定结果"
项目 Items | 组别 Groups | |||
|---|---|---|---|---|
| CK | GP1 | GP2 | GP3 | |
DDPH自由基清除率 DDPH active radical scavenging/% | 89.12±1.13c | 92 .86±0.76ab | 93.71±0.60a | 91.96±0.60b |
| 谷胱甘肽过氧化氢酶GSH-Px/(U/g) | 120.37±16.55c | 337.34±46.71b | 436.16±25.73a | 459.19±54.72a |
| 超氧化物歧化酶 SOD/(U/g) | 96.59±2.35b | 99.65±3.72b | 125.99±11.27a | 125.47±8.69a |
| 总抗氧化能力T-AOC/(mmol/g) | 0.34±0.04d | 0.44±0.02c | 0.54±0.04b | 0.74±0.01a |
| 总多糖 TP/% DM | 1.04±0.04b | 1.31±0.14a | 1.47±0.14a | 1.50±0.19a |
| [1] | NAZAR M, WANG S, ZHAO J, et al. The feasibility and effects of exogenous epiphytic microbiota on the fermentation quality and microbial community dynamics of whole crop corn[J]. Bioresource Technology, 2020, 306:123106. |
| [2] | WANG C, ZHENG M, WU S, et al. Effects of gallic acid on fermentation parameters,protein fraction, and bacterial community of whole plant soybean silage[J]. Frontiers in Microbiology, 2021, 12:662966. |
| [3] | FENG Q X, ZHANG J, LING W Q, et al. Ensiling hybrid Pennisetum with lactic acid bacteria or organic acids improved the fermentation quality and bacterial community[J]. Frontiers in Microbiology, 2023, 14:1216722. |
| [4] | GHELLER L S, GHIZZI L G, TAKIYA C S, et al. Different organic acid preparations on fermentation and microbiological profile, chemical composition, and aerobic stability of whole-plant corn silage[J]. Animal Feed Science and Technology, 2021, 281:115083. |
| [5] | WU Y F, XIAO Y, OKOYE C O, et al. Fermentation profile and bioactive component retention in honeysuckle residue silages inoculated with lactic acid bacteria: A promising feed additive for sustainable agriculture[J]. Industrial Crops and Products, 2025, 224:1200315. |
| [6] | LI J F, YUAN X J, DONG Z H, et al. The effects of fibrolytic enzymes, cellulolytic fungi and bacteria on the fermentation characteristics, structural carbohydrates degradation, and enzymatic conversion yields of Pennisetum sinese silage[J]. Bioresource Technology, 2018, 264:123-130. |
| [7] | 农业农村部. 农业农村部关于印发《农业绿色发展技术导则(2018—2030年)》的通知[J]. 中华人民共和国农业农村部公报, 2018, 7:41-51. |
| MINISTRY OF AGRICULTURE AND RURAL AFFAIRS. Notice of the ministry of agriculture and rural affairs on printing and distributing the technical guidelines for green agricultural development (2018—2030)[J]. Bulletin of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2018, 7:41-51.(in Chinese) | |
| [8] | 张欢,牟怡晓,张桂杰. 添加枸杞副产物对紫花苜蓿青贮发酵品质及微生物多样性的影响[J]. 草业学报, 2022, 31(4):136-144. |
| ZHANG H, MU Y X, ZHANG G J. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage[J]. Acta Prataculturae Sinica, 2022, 31(4):136-144.(in Chinese) | |
| [9] | CHEN L, QU H, BAI S, et al. Effect of wet sea buckthorn pomace utilized as an additive on silage fermentation profile and bacterial community composition of alfalfa[J]. Bioresource Technology, 2020, 314:123773. |
| [10] | 周小栋,马成艳,张嘉琪,等. 柠条叶提取物对苜蓿青贮品质及抗氧化活性的影响[J]. 草业科学, 2024, 41(4):1-12. |
| ZHOU X D, MA C Y, ZHANG J Q, et al. Effects of leaf extracts of Caragana on silage quality and antioxidant activity of alfalfa[J]. Pratacultural Science, 2024, 41(4):1-12.(in Chinese) | |
| [11] | 金丽娜,蒋苏苏,敬淑燕,等. 黄芪药渣与全株玉米混合青贮对饲料感官、发酵品质及营养成分的影响[J]. 草地学报, 2024, 32(2):630-636. |
| JIN L N, JIANG S S, JING S Y, et al. Effects of adding Astragalus bunge residue on the sensory evaluation, fermentation quality, and nutritive value of whole-crop corn silage[J]. Acta Agrestia Sinica, 2024, 32(2):630-636.(in Chinese) | |
| [12] | 谢继圆.甜叶菊多糖对全株玉米混秣食豆和狼尾草青贮品质的影响及其机制研究[D].泰安:山东农业大学,2023. |
| XIE J Y. Effects of stevia polysaccharide on silage quality of whole corn hayseed bean and Pennisetum and its mechanism[D]. Tai’an: Shandong Agricultural University, 2023.(in Chinese) | |
| [13] | YAN B, HOU J, LI W, et al. A review on the plant resources of important medicinal licorice[J]. Journal of Ethnopharmacology, 2023, 301:115823. |
| [14] | DING Y, BRAND E, WANG W, et al. Licorice: Resources, applications in ancient and modern times[J]. Journal of Ethnopharmacology, 2022, 298:115594. |
| [15] | SHANG Z, LIU C, QIAO X, et al. Chemical analysis of the Chinese herbal medicine licorice (Gan-Cao): An update review[J]. Journal of Ethnopharmacology, 2022, 299:115686. |
| [16] | SIMAYI Z, ROZI P, YANG X, et al. Isolation, structural characterization, biological activity, and application of Glycyrrhiza polysaccharides: Systematic review[J]. International Journal of Biological Macromolecules, 2021, 183:387-398. |
| [17] | CHENG A, WAN F, WANG J, et al. Macrophage immunomodulatory activity of polysaccharides isolated from Glycyrrhiza uralensis Fish[J]. International Immunopharmacology, 2008, 8(1):43-50. |
| [18] | CHENG Z, ZHENG Q, DUAN Y, et al. Effect of subcritical water temperature on the structure,antioxidant activity and immune activity of polysaccharides from Glycyrrhiza inflata Batalin[J]. International Journal of Biological Macromolecules, 2024, 261:129591. |
| [19] | ZHANG C H, YU Y, LIANG Y Z, et al. Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis [J]. International Journal of Biological Macromolecules, 2015, 79:681-686. |
| [20] | HASAN M K, ARA I, MONDAL M S A, et al. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra [J]. Heliyon, 2021, 7(6):e07240. |
| [21] | ZHANG X, ZHAO S, SONG X, et al. Inhibition effect of Glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition[J]. Journal of Pharmacological Sciences, 2018, 137(4):324-332. |
| [22] | 贾玉山,玉柱,格根图,等. 草产品加工与贮藏 学[M]. 北京:中国农业大学出版社, 2019. |
| JIA Y S, YU Z, GE G T, et al. Cereals Processing and Storage[M]. Beijing: China Agricultural University Press, 2019.(in Chinese) | |
| [23] | YI Q, YU M, WANG P, et al. Effects of moisture content and silage starter on the fermentation quality and in vitro digestibility of waxy corn processing byproduct silage[J]. Fermentation, 2023, 9(12):1025. |
| [24] | SÁEZ-PLAZA P, NAVAS M J, WYBRANIEC S, et al. An overview of the Kjeldahl method of nitrogen determination. Part Ⅱ. Sample preparation, working scale, instrumental finish, and quality control[J]. Critical Reviews in Analytical Chemistry, 2013, 43(4):224-272. |
| [25] | VAN SOEST P, ROBERTSON J, LEWIS B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10):3583-3597. |
| [26] | BRODERICK G, KANG J. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media[J]. Journal of Dairy Science, 1980, 63(1):64-75. |
| [27] | 陈德奎,吴硕,邹璇,等. 邻苯二酚对香椿叶青贮营养品质及抗氧化性的影响[J]. 草业学报, 2022, 31(3):207-213. |
| CHEN D K, WU S, ZOU X, et al. Effect of catechol on the quality and antioxidant activity of Toona sinensis leaf silage[J]. Acta Prataculturae Sinica, 2022, 31(3):207-213.(in Chinese) | |
| [28] | LIU B, HUAN H, GU H, et al. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages[J]. Bioresource Technology, 2019, 273:212-219. |
| [29] | WANG Q, GARRITY G M, TIEDJE J M, et al. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267. |
| [30] | MENKE K H, RAAB L, SALEWSKI A, et al. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro [J]. The Journal of Agricultural Science, 1979, 93(1):217-222. |
| [31] | SUN Z Q, LI Y, LI S Y, et al. Pretreatment of sweet sorghum silages with Lactobacillus plantarum and cellulase with two different raw material characteristics: Fermentation profile, carbohydrate composition, in vitro rumen fermentation and microbiota communities[J]. Chemical and Biological Technologies in Agriculture, 2025, 12(1):33. |
| [32] | LIU X, LI D, GE Q, et al. Effects of harvest period and mixed ratio on the characteristic and quality of mixed silage of alfalfa and maize[J]. Animal Feed Science and Technology, 2023, 306:115796. |
| [33] | WILKINSON J M. Silage[M]. UK: Chalcombe Publications, 2005. |
| [34] | NI K, WANG F, ZHU B, et al. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage[J]. Bioresource Technology, 2017, 238:706-715. |
| [35] | DU Z, SUN L, LIN Y, et al. Use of napier grass and rice straw hay as exogenous additive improves microbial community and fermentation quality of paper mulberry silage[J]. Animal Feed Science and Technology, 2022, 285:115219. |
| [36] | THOMPSON D N, BARNES J M, HOUGHTON T P. Effect of additions on ensiling and microbial community of senesced wheat straw[J]. Applied Biochemistry and Biotechnology, 2005, 121(1-3):0021-0046. |
| [37] | ZHAO J, YIN X, WANG S, et al. Separating the effects of chemical and microbial factors on fermentation quality and bacterial community of napier grass silage by using gamma-ray irradiation and epiphytic microbiota transplantation[J]. Animal Feed Science and Technology, 2021, 280:115082. |
| [38] | ZHU W, ZHOU S, LIU J, et al. Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide[J]. Biomedicine & Pharmacotherapy, 2020, 121:109591. |
| [39] | ZHANG C, LI C, ZHAO P, et al. Effects of dietary Glycyrrhiza polysaccharide supplementation on growth performance,intestinal antioxidants, immunity and microbiota in weaned piglets[J]. Animal Biotechnology, 2022, 34(7):2273-2284. |
| [40] | MIRZADEH M, ARIANEJAD M R, KHEDMAT L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review[J]. Carbohydrate Polymers, 2020, 229:115421. |
| [41] | NKOSI B D, MEESKE R, VAN DER MERWE H J, et al. Effects of homofermentative and heterofermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams[J]. Animal Feed Science and Technology, 2010, 157(3-4):195-200. |
| [42] | YI Q, WANG P, YU M, et al. Effects of additives on the fermentation quality, in vitro digestibility, and aerobic stability of amaranth (Amaranthus hypochondriacus) and wheat bran mixed silage[J]. Fermentation, 2023, 9(8):711. |
| [43] | 卢德勋. 动物营养学科发展在战略方向上的重大突破:构建动物健康营养理论和技术体系及其实际应 用[J].动物营养学报, 2021, 33(1):1-12. |
| LU D X. A major breakthrough in development of animal nutrition in strategic direction: Building an animal health and nutrition theory and technology system and its application[J]. Chinese Journal of Animal Nutrition, 2021, 33(1):1-12.(in Chinese) | |
| [44] | LI W H, WANG L, HE H Y, et al. Expression of neutrophil gelatinase-associated lipocalin in low osmolar contrast-induced nephropathy in rats and the effect of N-acetylcysteine[J]. Experimental and Therapeutic Medicine, 2016, 12(5):3175-3180. |
| [45] | ZHANG X, GUO X, LI F, et al. Antioxidant, flavonoid, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage inoculated with novel Lactiplantibacillus plantarum and Pediococcus acidilactici strains with high-antioxidant activity[J]. Animal Feed Science and Technology, 2022, 288:115301. |
| [46] | MRUK D D, SILVESTRINI B, MO M Y, et al. Antioxidant superoxide dismutase—A review: Its function, regulation in the testis, and role in male fertility[J]. Contraception, 2002, 65(4):305-311. |
| [47] | LIU Y, WANG J, DING J, et al. Effects of hypoxia stress on oxidative stress,apoptosis and microorganisms in the intestine of Large Yellow croaker (Larimichthys crocea)[J]. Aquaculture, 2024, 581:740444. |
| [48] | ZHANG C, LI C, SHAO Q, et al. Effects of Glycyrrhiza polysaccharide in diet on growth performance, serum antioxidant capacity, and biochemistry of broilers[J]. Poultry Science, 2021, 100(3):100927. |
| [49] | HE L, ZHOU W, WANG C, et al. Effect of cellulase and Lactobacillus casei on ensiling characteristics, chemical composition, antioxidant activity, and digestibility of mulberry leaf silage[J]. Journal of Dairy Science, 2019, 102(11):9919-9931. |
| [50] | MUTAILLIFU P, BOBAKULOV K, ABUDUWAILI A, et al. Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra[J]. International Journal of Biological Macromolecules, 2020, 144:751-759. |
| [51] | JUNG J S, RAVINDRAN B, SOUNDHARRAJAN I, et al. Improved performance and microbial community dynamics in anaerobic fermentation of triticale silages at different stages[J]. Bioresource Technology, 2022, 345:126485. |
| [52] | FENG Q, SHI W, CHEN S, et al. Addition of organic acids and Lactobacillus acidophilus to the leguminous forage chamaecrista rotundifolia improved the quality and decreased harmful bacteria of the silage[J]. Animals, 2022, 12(17):2260. |
| [53] | BAI B, QIU R, WANG Z, et al. Effects of cellulase and lactic acid bacteria on ensiling performance and bacterial community of Caragana korshinskii silage[J]. Microorganisms, 2023, 11(2):337. |
| [54] | SONG C, LI J, XING J, et al. Effects of molasses interacting with formic acid on the fermentation characteristics, proteolysis and microbial community of seed-used pumpkin leaves silage[J]. Journal of Cleaner Production,2022, 380:135186. |
| [55] | 陈荣强,雷小文,吴丽娟,等. 不同复合添加剂对饲料桑与王草混合青贮品质与微生物多样性的影响[J]. 中国畜牧兽医, 2024, 51(7):2849-2859. |
| CHEN R Q, LEI X W, WU L J, et al. Effects of different compound additives on quality and microbial diversity of mixed silage of forage mulberry and King grass[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(7):2849-2859.(in Chinese) | |
| [56] | BAI J, XU D, XIE D, et al. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage[J]. Bioresource Technology, 2020, 315:123881. |
| [57] | YANG L, YUAN X, LI J, et al. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant[J]. Bioresource Technology, 2019, 275:280-287. |
| [58] | 牟怡晓, 张欢, 马聪慧, 等. 不同添加量枸杞副产物对柠条锦鸡儿发酵特性及微生物多样性的影 响[J].动物营养学报, 2021, 33(9):5152-5161. |
| MU Y X, ZHANG H, MA C H, et al. Effects of different supplemental levels of Lycium barbarum by-product on fermentation characteristic and microbial diversity of Caragana korshinskii silage[J]. Chinese Journal of Animal Nutrition, 2021, 33(9):5152-5161.(in Chinese) | |
| [59] | NI K, WANG X, LU Y, et al. Exploring the silage quality of alfalfa ensiled with the residues of Astragalus and hawthorn[J]. Bioresource Technology,2020,297:122249. |
| [60] | DU Z, SUN L, CHEN C, et al. Exploring microbial community structure and metabolic gene clusters during silage fermentation of paper mulberry, a high-protein woody plant[J]. Animal Feed Science and Technology, 2021, 275:114766. |
| [61] | ALVES J S, DE MOURA SOUZA R, LIMA MOREIRA J P D, et al. Antimicrobial resistance of Enterobacteriaceae and Staphylococcus spp. isolated from raw cow’s milk from healthy, clinical and subclinical mastitis udders[J]. Preventive Veterinary Medicine, 2024, 227:106205. |
| [62] | ARGUDÍN M A, VANDERHAEGHEN W, BUTAYE P. Antimicrobial resistance and population structure of Staphylococcus epidermidis recovered from pig farms in Belgium[J]. The Veterinary Journal, 2015, 203(3):302-308. |
| [63] | TESSEMA Z, BAARS R. Chemical composition, in vitro dry matter digestibility and ruminal degradation of napier grass (Pennisetum purpureum (L.) Schumach.) mixed with different levels of Sesbania sesban (L.) Merr[J]. Animal Feed Science and Technology, 2004, 117(1-2):29-41. |
| [64] | 冉航,朱声鑫,刘婷,等. 黄芪多糖粉对湖羊瘤胃体外发酵参数和微生物区系的影响[J]. 动物营养学报, 2025, 37(3):1880-1892. |
| RAN H, ZHU S X, LIU T, et al. Effects of astragalus polysaccharide powder on rumen fermentation parameters and microflora of hu sheep in vitro [J]. Chinese Journal of Animal Nutrition, 2025, 37(3):1880-1892.(in Chinese) | |
| [65] | ZHANG Q, WU S, ZOU X, et al. Effects of Neolamarckia cadamba leaves extract on methanogenesis, microbial community in the rumen and digestibility of stylo silage[J]. Journal of Cleaner Production, 2022, 369:133338. |
| [66] | GOMAA W, SALEEM A, MCGEOUGH E, et al. Effect of red osier dogwood extract on in vitro gas production, dry matter digestibility, and fermentation characteristics of forage-based diet or grain-based diet[J]. Heliyon, 2024, 10(6):e27991. |
| [67] | SALLAM S, NASSER M, EL-WAZIRY A, et al. Evaluation of some ruminant feed stuffs using gas production technique, in vitro [J]. Proceedings of the British Society of Animal Science, 2017, 2007:218. |
| [68] | MENKE K H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid[J]. Animal Research and Development, 1988, 28:7-55. |
| [69] | BABAEINASAB Y, ROUZBEHAN Y, FAZAELI H, et al. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage[J]. Journal of Animal Science, 2015, 93(9):4377-4386. |
| [1] | 王睿, 何金童, 程雨辰, 任文义, 马玉林, 徐晓锋. 地衣芽孢杆菌对玉米青贮发酵品质的调控研究[J]. 中国畜牧兽医, 2025, 52(3): 1070-1079. |
| [2] | 胡湘云, 宣泽义, 罗蒙和, 潘锐, 曹艳红, 卜泽明, 吴军华, 陈少梅. 不同添加剂对白酒糟发酵全混合饲粮发酵品质及微生物多样性的影响[J]. 中国畜牧兽医, 2025, 52(3): 1113-1122. |
| [3] | 高珍珍, 赵留威, 乔杰, 张超, 杨英. 列当提取物工艺优化及体内外抗氧化活性研究[J]. 中国畜牧兽医, 2025, 52(12): 5942-5955. |
| [4] | 陈荣强, 雷小文, 吴丽娟, 欧翔, 连海, 张强, 邱静芸, 操贤洪, 严蕾, 蔡小芬. 不同复合添加剂对饲料桑与王草混合青贮品质与微生物多样性的影响[J]. 中国畜牧兽医, 2024, 51(7): 2849-2859. |
| [5] | 王诗仪, 司玮, 汤超华, 张军民, 张会艳, 赵青余, 王学敏, 马琳, 赵金山, 秦玉昌. 东方山羊豆营养成分测定及提取物抗氧化活性评价[J]. 中国畜牧兽医, 2024, 51(5): 1903-1911. |
| [6] | 陈雅坤, 闫威明, 卜登攀, 赵连生, 许建初, 沈旖帆, 郑爱荣, 张建勇. 不同比例牛角瓜与皇竹草混合青贮品质研究[J]. 中国畜牧兽医, 2023, 50(8): 3065-3072. |
| [7] | 汪祥燕, 辛国芹, 徐海燕, 谷巍, 兰江华, 郝木强, 冯刚. 一株高抗氧化活性戊糖片球菌的筛选[J]. 中国畜牧兽医, 2022, 49(1): 179-187. |
| [8] | 徐百昌, 方紫依, 蒙锦燕, 崔庆含, 李泓漫, 司红彬. 杂交构树叶多酚提取工艺优化及其抗氧化活性研究[J]. 中国畜牧兽医, 2021, 48(3): 1046-1053. |
| [9] | 努尔哈提·斯拉甫尔, 麦提图尔荪·阿卜杜克热木, 乌斯满·依米提. 氨基酸副产物对青贮饲料发酵品质及消化率的影响[J]. 中国畜牧兽医, 2020, 47(10): 3183-3192. |
| [10] | 熊云霞, 王丽, 温晓鹿, 胡友军, 易宏波, 邱月琴, 杨雪芬, 吴绮雯, 蒋宗勇. 日粮中添加藤茶提取物对猪生长性能、血液生化指标、抗氧化活性的影响[J]. 《中国畜牧兽医》, 2019, 46(5): 1330-1339. |
| [11] | 张旭, 郭盼盼, 金锡九, 严昌国, 金远铭, 奚文博, 高青山. 不同温度条件下发酵时间对完全混合发酵日粮(TMF)发酵品质的影响[J]. 《中国畜牧兽医》, 2018, 45(3): 673-681. |
| [12] | 张福欣, 宋佳烜, 刘晓东. 甘肃棘豆黄酮抗氧化活性及免疫活性的研究[J]. 《中国畜牧兽医》, 2018, 45(12): 3387-3394. |
| [13] | 吴金彩, 刘婷婷, 岳春旺, 郭金双, 赵治海, 范光宇, 郝峰勇, 孔祥浩, 孙茂红. 添加不同水平糖蜜对全株“张杂谷”青贮体外瘤胃发酵特性和营养物质降解率的影响[J]. 《中国畜牧兽医》, 2018, 45(10): 2752-2760. |
| [14] | 刘婷婷, 张振威, 岳春旺, 杨翠军, 李林, 孔祥浩, 孙茂红. 添加糖蜜和青贮添加剂对“张杂谷”全株青贮发酵品质的影响[J]. 《中国畜牧兽医》, 2017, 44(5): 1382-1387. |
| [15] | 宋鸽, 朱小清, 张诗, 庄益芬. 绿汁发酵液和纤维素酶对稻草青贮及稻草、甘蔗梢混合青贮品质的影响[J]. 《中国畜牧兽医》, 2017, 44(12): 3512-3518. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||