| [1] |
GUO X, LIU C, ZHAO Y, et al. CRISPR ribonucleoprotein-mediated precise editing of multiple genes in porcine fibroblasts[J]. Animals, 2024, 14(4): 650.
|
| [2] |
MA J, GAO X, LI J Y, et al. Assessing the genetic background and selection signatures of Huaxi cattle using high-density SNP array[J].Animals, 2021, 11(12): 3469.
|
| [3] |
厉荣. 我国肉牛产业可持续发展测度及影响因素[J]. 饲料研究, 2024, 47(19): 186-190.
|
|
LI R. Measurement and influencing factors of sustainable development of China’s beef cattle industry[J]. Feed Research, 2024, 47(19): 186-190. (in Chinese)
|
| [4] |
张天留, 王泽昭, 朱波, 等. 华西牛新品种培育及对我国肉牛育种的启示[J]. 吉林农业大学学报, 2023, 45(4): 385-390.
|
|
ZHANG T L, WANG Z Z, ZHU B, et al. The cultivation of new breeds of Huaxi cattle and its enlightenment to beef cattle breeding in China[J]. Journal of Jilin Agricultural University, 2023, 45(4): 385-390. (in Chinese)
|
| [5] |
MENCHACA A, SANTOS-NETO P C D, MULET A P, et al. CRISPR in livestock: From editing to printing[J]. Theriogenology, 2020, 150: 247-254.
|
| [6] |
VILLAMIL P R, BEATON B P, KRISHER R L. Gene editing in livestock: Innovations and applications[J]. Animal Reproduction, 2024, 21(3): 20240054.
|
| [7] |
POPOVA J, BETS V, KOZHEVNIKOVA E. Perspectives in genome-editing techniques for livestock[J]. Animals, 2023, 13(16): 2580.
|
| [8] |
SHENG H, GUO W Y, ZHANG L L, et al. Proteomic studies on the mechanism of myostatin regulating cattle skeletal muscle development[J]. Frontiers in Genetics, 2021, 12: 752129.
|
| [9] |
GYEONGMIN G, DONGHYUK K, KYEONGHYUN E, et al. Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9[J]. Biotechnology Journal, 2021, 17(7): 2100198.
|
| [10] |
YANG S P, ZHU X X, QU Z X, et al. Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping[J]. In Vitro Cellular & Developmental Biology Animal, 2023, 59(4): 241-255.
|
| [11] |
SONG S Z, HE Z Y, CHENG Y, et al. MSTN modification in goat mediated by TALENs and performance analysis[J]. Hereditas (Beijing), 2022, 44(6): 531-542.
|
| [12] |
JAKARIA J, WENNY L N A, RIYADI I, et al. Discovery of SNPs and indel 11 bp of the myostatin gene and its association with the double-muscled phenotype in Belgian blue crossbred cattle[J]. Gene, 2021, 784: 145598.
|
| [13] |
KALDS P, ZHOU S, HUANG S, et al. When less is more: Targeting the Myostatin gene in livestock for augmenting meat production[J].Journal of Agricultural and Food Chemistry, 2023, 71(10): 4216-4227.
|
| [14] |
李光鹏, 白春玲, 魏著英, 等. 黄牛Myostatin基因编辑研究[J]. 内蒙古大学学报(自然科学版), 2020, 51(1): 12-32.
|
|
LI G P, BAI C L, WEI Z Y, et al. Myostatin gene editing study in cattle[J]. Journal of Inner Mongolia University (Natural Science Edition), 2020, 51(1): 12-32. (in Chinese)
|
| [15] |
娜日娜, 冀国尚, 杨梦丽, 等. 华西牛与中国西门塔尔牛肉用性能分析[J]. 中国畜牧杂志, 2025, 61(10): 149-156.
|
|
NA R N, JI G S, YANG M L, et al. Analysis of beef performance in Huaxi cattle and Chinese Simmental cattle[J]. Chinese Journal of Animal Science, 2025, 61(10): 149-156. (in Chinese)
|
| [16] |
李柯安宁, 杜丽丽, 安炳星, 等. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(9): 3664-3676.
|
|
LI K A N, DU L L, AN B X, et al. Genetic parameter estimation and genome-wide association study for carcass traits and primal cuts weight traits in Huaxi cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3664-3676. (in Chinese)
|
| [17] |
MA J, GAO X, LI J Y, et al. Assessing the genetic background and selection signatures of Huaxi cattle using high-density SNP array[J]. Animals, 2021, 11(12): 3469.
|
| [18] |
KHAN N, LI Z, ALI A, et al. Comprehensive transcriptomic analysis of myostatin-knockout pigs: Insights into muscle growth and lipid metabolism[J]. Transgenic Research, 2025, 34(1): 12.
|
| [19] |
朱琳, 谷明娟, 王丽娜,等. Myostatin基因编辑牛骨骼肌组织学结构与转录组分析[J]. 农业生物技术学报, 2022, 30(10): 1903-1912.
|
|
ZHU L, GU M J, WANG L N, et al. Myostatin gene-edited bovine skeletal muscle histological structure and transcriptome analysis[J]. Journal of Agricultural Biotechnology, 2022, 30(10): 1903-1912. (in Chinese)
|
| [20] |
LI H H, WANG G, HAO Z Q, et al. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer[J]. Scientific Reports, 2016, 6(1): 33675.
|
| [21] |
ZHANG M, CAI G Y, ZHOU R, et al. Generation of ETV5 knockout pigs with CRISPR/Cas9[J]. Indian Journal of Animal Research, 2021, 55(9): 999-1004.
|
| [22] |
SUVÁ M, BASTÓN I J, WIEDENMANN A E, et al.Use of an exogenous DNA-free system to generate MSTN-KO calves by CRISPR/Cas9 and SCNT[J]. Reproductive Biology, 2025, 25(3):101050.
|
| [23] |
REDEL B K, YOON J, REESE E, et al. Novel off-targeting events identified after genome-wide analysis of CRISPR-Cas edited pigs[J]. The CRISPR Journal, 2024, 7(3): 141-149.
|
| [24] |
RYCZEK N, HRYHOROWICZ M, LIPIŃSKI D, et al. Evaluation of the CRISPR/Cas9 genetic constructs in efficient disruption of porcine genes for xenotransplantation purposes along with an assessment of the off-target mutation formation[J]. Genes (Basel), 2020, 11(6): 713.
|
| [25] |
MAHESH G, MARTIN E W, AQDAS M, et al. Whole genome sequencing of CRISPR/Cas9-engineered NF-κB reporter mice for validation and variant discovery[J]. Scientific Data, 2024, 11(1): 1225.
|
| [26] |
HAMZE J G, CAMBRA J M, SERNA S N, et al. Navigating gene editing in porcine embryos: Methods, challenges, and future perspectives[J]. Genomics, 2025, 117(2): 111014.
|
| [27] |
CHEN J, WANG J, ZHAO H, et al. Molecular breeding of pigs in the genome editing era[J]. Genetics, Selection, Evolution, 2025, 57(1): 12.
|
| [28] |
PUNETHA M, KUMAR D, SAINI S, et al. Optimising electroporation condition for CRISPR/Cas-mediated knockout in zona-intact buffalo zygotes[J]. Animals, 2023, 14(1): 134.
|
| [29] |
MIN G G, HYEON E K, HYEOK K D, et al. Generation of double knockout cattle via CRISPR-Cas9 ribonucleoprotein (RNP) electroporation[J]. Journal of Animal Science and Biotechnology, 2023, 14(1): 103.
|
| [30] |
DU X, QUINN A, MAHONY T, et al. Optimizing genome editing in bovine cells: A comparative study of Cas9 variants and CRISPR delivery methods[J]. Biocatalysis and Agricultural Biotechnology, 2025, 6(5): 103553.
|
| [31] |
CAMARGO L S A, OWEN J R, VAN EENENNAAM A L, et al. Efficient one-step knockout by electroporation of ribonucleoproteins into zona-intact bovine embryos[J]. Frontiers in Genetics, 2020, 11: 570069.
|
| [32] |
MAJI D, MIGUELA V, CAMERON A D, et al. Enhancing in vivo electroporation efficiency through hyaluronidase: Insights into plasmid distribution and optimization strategies[J]. Pharmaceutics, 2024, 16(4): 547.
|
| [33] |
FERNÁNDEZ J P, PETERSEN B, HASSEL P, et al. Comparison between electroporation at different voltage levels and microinjection to generate porcine embryos with multiple xenoantigen knock-outs[J]. International Journal of Molecular Sciences, 2024, 25(22): 11894.
|