[1] 李万利,李文清,王明发,等.锌指核酸酶及其应用研究进展[J].河南农业科学,2014,43(8):1-9. LI W L,LI W Q,WANG M F,et al.Research progress on zinc finger nuclease and its application[J].Journal of Henan Agricultural Sciences,2014,43(8):1-9.(in Chinese) [2] SAKUMA T,YAMAMOTO T.Updated overview of TALEN construction systems[J].Genome Editing in Animals:Methods and Protocols,2023,2637:27-39. [3] YIN W,CHEN Z,HUANG J,et al.Application of CRISPR-Cas9 gene editing technology in crop breeding[J].Chinese Journal of Biotechnology,2023,39(2):399-424. [4] HUANG S,YAN Y,SU F,et al.Research progress in gene editing technology[J].Frontiers in Bioscience-Landmark,2021,26(10):916-927. [5] SHI Y,FU X,YIN Y,et al.CRISPR-Cas12a system for biosensing and gene regulation[J].Chemistry,2021,16(8):857-867. [6] WU S,TIAN P,TAN T.CRISPR-Cas13 technology portfolio and alliance with other genetic tools[J].Biotechnology Advances,2022,61:108047. [7] 王丽媛,付瑜瑜,谢元斌.单碱基编辑技术在治疗遗传性贫血中的应用[J].中国生物化学与分子生物学报,2024,40(6):770-778. WANG L Y,FU Y Y,XIE Y B.Application of single base editing technology in the treatment of hereditary anemia[J].Chinese Journal of Biochemistry & Molecular Biology,2024,40(6):770-778.(in Chinese) [8] 周磊,李东旭,冒魏佳,等.Cas9和PE介导湖羊骨骼肌卫星细胞MSTN基因敲除的研究[J].南京农业大学学报,2025,48(2):419-426. ZHOU L,LI D X,MAO W J,et al.Cas9 and PE-mediated MSTN gene knockout in skeletal muscle satellite cells of Hu sheep[J].Journal of Nanjing Agricultural University,2025,48(2):419-426.(in Chinese) [9] GONEN S,JENKO J,GORJANC G,et al.Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs[J].Genetics Selection Evolution,2017,49(1):3. [10] PORTEUS M H,BALTIMORE D.Chimeric nucleases stimulate gene targeting in human cells[J].Science,2003,300(5620):763. [11] CORNU T I,THIBODEAU-BEGANNY S,GUHL E,et al.DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases[J].Molecular Therapy,2008,16(2):352-358. [12] WILSON K A,MCEWEN A E,PRUETT-MILLER S M,et al.Expanding the repertoire of target sites for zinc finger nuclease-mediated genome modification[J].Molecular Therapy-Nucleic Acids,2013,2(4):e88. [13] KIM Y G,CHA J,CHANDRASEGARAN S.Hybrid restriction enzymes:Zinc finger fusions to Fok Ⅰ cleavage domain[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(3):1156-1160. [14] BIBIKOVA M,GOLIC M,GOLIC K G,et al.Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J].Genetics,2002,161(3):1169-1175. [15] HAUSCHILD J,PETERSEN B,SANTIAGO Y,et al.Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(29):12013-12017. [16] CARLSON D F,FAHRENKRUG S C,HACKETT P B.Targeting DNA with fingers and TALENs[J].Molecular Therapy-Nucleic Acids,2012,1(1):e3. [17] QIAN L,TANG M,YANG J,et al.Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Scientific Reports,2015,5(1):14435. [18] ZHANG H X,ZHANG Y,YIN H.Genome editing with mRNA encoding ZFN,TALEN,and Cas9[J].Molecular Therapy,2019,27(4):735-746. [19] CARLSON D F,TAN W,LILLICO S G,et al.Efficient TALEN-mediated gene knockout in livestock[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(43):17382-17387. [20] MOSCOU M J,BOGDANOVE A J.A simple cipher governs DNA recognition by TAL effectors[J].Science,2009,326(5959):1501. [21] 柴楠,刘雨馨,张瑞祥,等.基因组编辑工具的发展:从CRISPR/Cas9到TnpB[J].基因组学与应用生物学,2023,42(12):1267-1274. CHAI N,LIU Y X,ZHANG R X,et al.Development of genome editing tools:From CRISPR/Cas9 to TnpB[J].Genomics and Applied Biology,2023,42(12):1267-1274.(in Chinese) [22] JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821. [23] CARLSON D F,WALTON M W,FAHRENKRUG S C,et al.Precision editing of large animal genomes[J].Advances in Genetics,2012,80:37-97. [24] NISHIMASU H,SHI X,ISHIGURO S,et al.Engineered CRISPR-Cas9 nuclease with expanded targeting space[J].Science,2018,361(6408):1259-1262. [25] LEI Z,MENG H,LV Z,et al.Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors[J].Nature Methods,2021,18(6):643-651. [26] JIN S,ZONG Y,GAO Q,et al.Cytosine,but not adenine,base editors induce genome-wide off-target mutations in rice[J].Science,2019,364(6437):292-295. [27] ANZALONE A V,KOBLAN L W,LIU D R.Genome editing with CRISPR-Cas nucleases,base editors,transposases and prime editors[J].Nature Biotechnology,2020,38(7):824-844. [28] YANG Y,WANG D,LV P,et al.Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system[J].Molecular Biology Reports,2023,50(4):3723-3738. [29] ABUDAYYEH O O,GOOTENBERG J S,KONERMANN S,et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science,2016,353(6299):aaf5573. [30] GANDHI P U,GAGGIN H K,REDFIELD M M,et al.Insulin-like growth factor-binding protein-7 as a biomarker of diastolic dysfunction and functional capacity in heart failure with preserved ejection fraction:Results from the RELAX trial[J].JACC:Heart Failure,2016,4(11):860-869. [31] MILLER J B,ZHANG S,KOS P,et al.Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA[J].Angewandte Chemie,2017,129(4):1079-1083. [32] QIU L,SUN M,CHEN L,et al.Iron-confined CRISPR/Cas9-ribonucleoprotein delivery system for redox-responsive gene editing[J]. Small,2024,20(30):e2309431. [33] LI X,YANG Y,BU L,et al.Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing[J].Cell Research,2014,24(4):501-504. [34] 赖良学.基因修饰猪技术及其应用[A].广东省遗传学会第九届代表大会暨学术研讨会论文及摘要汇编[C].2014. LAI L X.Genetically modified pig technology and its application[A].Compilation of Papers and Abstracts of the 9th Congress and Symposium of Guangdong Genetics Society[C].2014.(in Chinese) [35] WU H,WANG Y,ZHANG Y,et al.TALE nickase-mediated SP110 knock in endows cattle with increased resistance to tuberculosis[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(13):E1530-E1539. [36] XIE Z,JIAO H,XIAO H,et al.Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J].Antiviral Research,2020,174:104696. [37] LEE J,KIM D H,LEE K.Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide[J]. International Journal of Molecular Sciences,2020,21(4):1504. [38] LEE H J,PARK K J,LEE K Y,et al.Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A,B,and J[J]. Journal of Animal Science and Biotechnology,2019,10:23. [39] KOSLOVÁ A,KU AČG EROVÁ D,REINIŠOVÁ M,et al.Genetic resistance to Avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells[J].Viruses,2018,10(11):605. [40] CHEN Y,WANG S,LI X,et al.Residues L55 and W69 of Tva mediate entry of subgroup A Avian leukosis virus[J].Journal of Virology,2022,96(18):e00678-22. [41] KOSLOVÁ A,TREFIL P,MUCKSOVÁ J,et al.Knock-out of Retrovirus receptor gene Tva in the chicken confers resistance to Avian leukosis virus subgroups A and K and affects cobalamin (vitamin B12)-dependent level of methylmalonic acid[J].Viruses,2021,13(12):2504. [42] KOSLOVÁ A,TREFIL P,MUCKSOVÁ J,et al.Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of Avian leukosis virus[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(4):2108-2112. [43] LEE H J,LEE K Y,PARK Y H,et al.Acquisition of resistance to Avian leukosis virus subgroup B through mutations on Tvb cysteine-rich domains in DF-1 chicken fibroblasts[J].Veterinary Research,2017,48(1):48. [44] LI X,CHEN Y,YU M,et al.Residues E53,L55,H59,and G70 of the cellular receptor protein Tva mediate cell binding and entry of the novel subgroup K Avian leukosis virus[J].Journal of Biological Chemistry,2023,299(3):102962. [45] ZHANG Y,LUO J,TANG N,et al.Targeted editing of the pp38 gene in Marek’s disease virus-transformed cell lines using CRISPR/Cas9 system[J].Viruses,2019,11(5):391. [46] LUO J,TENG M,ZAI X,et al.Efficient mutagenesis of Marek’s disease virus-encoded microRNAs using a CRISPR/Cas9-based gene editing system[J].Viruses,2020,12(4):466. [47] GAO P,CHEN L,FAN L,et al.Newcastle disease virus RNA-induced IL-1β expression via the NLRP3/Caspase-1 inflammasome[J].Veterinary Research,2020,51(1):53. [48] WANG L,XUE Z,WANG J,et al.Targeted knockout of Mx in the DF-1 chicken fibroblast cell line impairs immune response against Newcastle disease virus[J].Poultry Science,2023,102(9):102855. [49] HEATON B E,KENNEDY E M,DUMM R E,et al.A CRISPR activation screen identifies a Pan-avian influenza virus inhibitory host factor[J].Cell Reports,2017,20(7):1503-1512. [50] PARK J S,WOO S J,SONG C S,et al.Modification of surface glycan by expression of beta-1,4-N-acetyl-galactosaminyltransferase (B4GALNT2) confers resistance to multiple viruses infection in chicken fibroblast cell[J].Frontiers in Veterinary Science,2023,10:1160600. [51] 孙婷婷,岑山,王静.甲型流感病毒宿主适应的分子基础及其相关宿主因子的研究进展[J].遗传,2023,45(11):976-985. SUN T T,CEN S,WANG J.Research progress on the molecular basis of host adaptation of Influenza A virus and its related host factors[J].Heredity,2023,45(11):976-985.(in Chinese) [52] LONG J S,IDOKO-AKOH A,MISTRY B,et al.Species specific differences in use of ANP32 proteins by Influenza A virus[J].eLife,2019,8:e45066. [53] BASIT A,TAHIR H,HAIDER Z,et al.CRISPR/Cas9-based deletion of SpvB gene from Salmonella Gallinarum leads to loss of virulence in chicken[J].Frontiers in Bioengineering and Biotechnology,2022,10:885227. [54] TAHIR H,BASIT A,TARIQ H,et al.Coupling CRISPR/Cas9 and lambda Red recombineering system for genome editing of Salmonella Gallinarum and the effect of ssaU knock-out mutant on the virulence of bacteria[J].Biomedicines,2022,10(12):3028. [55] ZHENG Q,BAI L,ZHENG S,et al.Efficient inhibition of Duck hepatitis B virus DNA by the CRISPR/Cas9 system[J].Molecular Medicine Reports,2017,16(5):7199-7204. [56] LIANG S,WANG M S,ZHANG B,et al.NOD1 is associated with the susceptibility of pekin duck flock to duck Hepatitis A virus genotype 3[J].Frontiers in Immunology,2021,12:766740. [57] BELLOC C C,DUPUIS L,DEVILLE S,et al.Evaluation of safety and immune response induced by several adjuvants included in Pasteurella multocida vaccines in chickens[J].Revue de Médecine Vétérinaire,2008,159(7):371-375. [58] APINDA N,MUENTHAISONG A,CHOMJIT P,et al.Simultaneous protective immune responses of ducks against duck plague and fowl cholera by recombinant Duck enteritis virus vector expressing Pasteurella multocida OmpH gene[J].Vaccines,2022,10(8):1358. [59] CHANG P,YAO Y,TANG N,et al.The application of NHEJ-CRISPR/Cas9 and Cre-Lox system in the generation of bivalent Duck enteritis virus vaccine against Avian influenza virus[J].Viruses,2018,10(2):81. [60] ZOU Z,HUANG K,WEI Y,et al.Construction of a highly efficient CRISPR/Cas9-mediated Duck enteritis virus-based vaccine against H5N1 Avian influenza virus and Duck Tembusu virus infection[J].Scientific Reports,2017,7(1):1478. [61] SALTER D W,SMITH E J,HUGHES S H,et al.Gene insertion into the chicken germ line by Retroviruses[J].Poultry Science,1986,65(8):1445-1458. [62] LILLICO S G,SHERMAN A,MCGREW M J,et al.Oviduct-specific expression of two therapeutic proteins in transgenic hens[J].Proceedings of the National Academy of Sciencesof the United States of America,2007,104(6):1771-1776. [63] RAJU T S,BRIGGS J B,BORGE S M,et al.Species-specific variation in glycosylation of IgG:Evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics[J].Glycobiology,2000,10(5):477-486. |