中国畜牧兽医 ›› 2026, Vol. 53 ›› Issue (2): 532-542.doi: 10.16431/j.cnki.1671-7236.2026.02.002
郭芷函1(
), 李阳1, 王绍雄2, 韩志强1, 李肖1, 崔冰冰3, 吕洁4, 张光磊5, 徐超1(
)
修回日期:2025-10-08
出版日期:2026-02-20
发布日期:2026-01-28
通讯作者:
徐超
E-mail:gzhtx0503@163.com;xcjlau@163.com
作者简介:郭芷函,E-mail: gzhtx0503@163.com
基金资助:
GUO Zhihan1(
), LI Yang1, WANG Shaoxiong2, HAN Zhiqiang1, LI Xiao1, CUI Bingbing3, LYU Jie4, ZHANG Guanglei5, XU Chao1(
)
Revised:2025-10-08
Online:2026-02-20
Published:2026-01-28
Contact:
XU Chao
E-mail:gzhtx0503@163.com;xcjlau@163.com
摘要:
窦前卵泡是卵泡从静息状态向主动生长阶段转变的关键时期,在反刍动物卵巢中数量丰富,具有较高的发育潜能和重要的应用价值。随着体外生殖技术的发展,窦前卵泡体外培养作为一种辅助繁殖手段,已成为反刍动物生殖生物学研究的重要方向。该技术不仅有助于提高家畜繁殖效率,还为濒危物种的生殖资源保存与种群恢复提供了新的思路。然而,目前反刍动物窦前卵泡体外发育仍受多种因素制约,卵泡结构复杂、培养体系稳定性不足以及卵母细胞可育性较低等问题限制了其进一步应用。反刍动物窦前卵泡在体外条件下已可实现一定程度的生长与发育,部分研究获得了桑椹胚等早期胚胎,但整体成熟率和发育潜能仍有限。文章系统综述了反刍动物窦前卵泡的分离方法与体外培养体系,包括机械分离与酶解法、原位培养、二维培养与三维培养,并比较了不同方法和体系在卵泡完整性、适用性及发育效果方面的差异。未来研究应聚焦于分离方法标准化、培养体系优化以及卵泡长期存活与体外成熟机制的解析,以期建立更为高效和稳定的培养体系,推动该技术在家畜生产与濒危物种保护中的应用转化。
中图分类号:
郭芷函, 李阳, 王绍雄, 韩志强, 李肖, 崔冰冰, 吕洁, 张光磊, 徐超. 窦前卵泡体外培养在反刍动物中的研究进展[J]. 中国畜牧兽医, 2026, 53(2): 532-542.
GUO Zhihan, LI Yang, WANG Shaoxiong, HAN Zhiqiang, LI Xiao, CUI Bingbing, LYU Jie, ZHANG Guanglei, XU Chao. Research Progress on in vitro Culture of Preantral Follicles in Ruminants[J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(2): 532-542.
表1
反刍动物窦前卵泡体外培养研究"
物种 Species | 培养方式 Culture method | 培养时间 Culture time/d | 特殊处理 Special treatment | 培养基及添加剂 Medium and Supplements | 结果 Results | 参考文献 References |
|---|---|---|---|---|---|---|
牛 Cattle | 原位 | 7 | 3种基础培养基比较 | α-MEM、TCM199、McCoy’s 5A、HEPPS、谷氨酰胺、胰岛素、转铁蛋白、硒、抗坏血酸、青霉素、链霉素 | α-MEM、TCM199、McCoy’s 5A培养基中正常形态卵泡占比分别为48%、39%和44%,发育卵泡占比分别为39%、26%和26% | Jimenez等[ |
| 7 | 41 ℃下12 h后38.5 ℃培养至结束 | TCM199、谷氨酰胺、次黄嘌呤、牛血清白蛋白、胰岛素、转铁蛋白、硒、抗坏血酸 | 对照组和热应激组中正常形态卵泡占比分别为52.55%和40.97%,生长卵泡占比92.31%和90.91% | Paes等[ | ||
| 6 | 添加10 ng/mL TNF-α或10 ng/mL地塞米松 | α-MEM、胰岛素转铁蛋白硒、谷氨酰胺、次黄嘌呤、牛血清白蛋白、青霉素、链霉素 | 对照组、添加TNF-α和地塞米松组中卵母细胞凋亡率分别为43.90%、56.25%和47.61%,颗粒细胞凋亡率分别为6.85%、26.99%和16.66% | Silva等[ | ||
山羊 Goat | 原位 | 18 | FSH培养8 d后,添加FGF-10继续培养8 d(FSH-FGF-10) | α-MEM、谷氨酰胺、次黄嘌呤、牛血清白蛋白、胰岛素转铁蛋白硒、抗坏血酸 | α-MEM或FSH-FGF-10培养基中正常卵泡占比分别为28.67%和70.67%,生长卵泡占比38.71%和68.80%,卵泡直径分别为27.47和27.09 μm,卵母细胞直径分别为18.83和18.84 μm | Almeida等[ |
| 7 | 添加0~10 ng/mL皮质醇 | α-MEM、谷氨酰胺、次黄嘌呤、牛血清白蛋白、胰岛素、转铁蛋白、硒 | 含0、1、5、10 ng/mL皮质醇组中卵泡平均直径分别为30.62、31.72、29.71和26.77 μm,卵母细胞平均直径分别为19.44、19.37、17.94和17.72 μm | Ponies等[ | ||
绵羊 Sheep | 原位 | 7 | 添加0~100 μg/mL EGCG | α-MEM、谷氨酰胺、次黄嘌呤、胰岛素、转铁蛋白、硒、牛血清白蛋白、抗坏血酸 | α-MEM培养基及含0.01、0.1、1、10、100 μg/mL EGCG组中卵泡平均直径分别为40.89、37.15、39.09、48.17、44.39和40.74 μm,卵母细胞直径分别为27.24、25.10、26.07、31.36、30.81和27.02 μm | Barberino 等[ |
牛 Cattle | 2D | 7 | 38.5 ℃ 16 h与41 ℃ 8 h交替培养 | α-MEM、丙酮酸钠、非必需氨基酸,胰岛素、转铁蛋白、硒、人重组促卵泡素、人重组激活素A、牛血清白蛋白、抗坏血酸、青霉素、链霉素 | 对照组或热应激组中平均直径分别增加10.6和5.4 μm,相对于初始直径平均增加13.9%和7.6%,卵泡直径相对增加66.0%和52.4% | de Aguiar等[ |
山羊 Goat | 2D | 12 | 以0.1、0.2、0.4 mg/mL巴西良木豆提取物作为培养基 | α-MEM、谷氨酰胺、胰岛素、转铁蛋白、硒、次黄嘌呤、抗坏血酸 | α-MEM及0.1、0.2、0.4 mg/mL巴西良木豆提取物组中卵母细胞成熟率分别为42.22%、16.20%、30.95%和7.50%,α-MEM+FSH或0.2 mg/mL AB+FSH组中卵母细胞成熟率分别为44.0%和42.5% | Gouveia等[ |
| 18 | 添加10 μg/mL重组人胰岛素、100 ng/mL重组牛FSH | α-MEM、谷氨酰胺、转铁蛋白、硒、次黄嘌呤、牛血清白蛋白、抗坏血酸、生长激素 | 卵泡日均增长11.4 μm,卵泡平均直径为426.0 μm,卵母细胞平均直径为124.45 μm | Ferreira 等[ | ||
| 18 | 添加10、15、100 mIU/mL重组人FSH | α-MEM、谷氨酰胺、人重组胰岛素、转铁蛋白、硒、牛血清白蛋白、次黄嘌呤、抗坏血酸 | 对照组及含10、50、100 mIU/mL重组人FSH组中卵泡平均直径分别为571.9、569.8、621.3和486.3 μm,卵母细胞完全生长率(>110 μm)分别为13.8%、5.3%、8.9%和6.9% | Ferreira 等[ | ||
绵羊 Sheep | 2D | 12 | 添加1 μmol/L山柰酚 | α-MEM、谷氨酰胺、胰岛素、装铁蛋白、硒、次黄嘌呤、牛血清白蛋白、抗坏血酸 | 添加1 μmol/L山柰酚和含抗氧化剂组中卵母细胞进入第一次减数分裂比例分别为11.54%和4.54% | Santos 等[ |
| 18 | 添加0.025 mol/L乳糖 | α-MEM、牛血清白蛋白、胰岛素、谷氨酰胺、次黄嘌呤、转铁蛋白、硒、抗坏血酸 | 在α-MEM或含0.025 mol/L乳糖培养基中形态正常卵泡分别为75.55%和92.50%,卵母细胞减数分裂率为48.20%和54.50% | Andrade 等[ | ||
| 牛Cattle | 2D | 18 | 添加5、10 ng/mL或5、10 μg/mL胰岛素 | HEPE缓冲液、谷氨酰胺、转铁蛋白、硒、牛血清白蛋白、抗坏血酸、激活素A | 添加5、10 ng/mL和5、10 μg/mL组中卵泡存活率分别为76.9%、94.2%、73.1%和71.1%,卵泡日平均生长大小分别为3.92、4.41、2.16和2.17 μm | Rossetto 等[ |
| 牛Cattle | 3D | 18 | 添加100 ng/mL FSH | HEPES缓冲液、谷氨酰胺、转铁蛋白、硒、牛血清白蛋白、抗坏血酸、激活素A | 对照组和100 ng/mL FSH组中卵泡存活率分别为72.2%和92.6%,卵泡日平均生长大小分别为4.28和8.63 μm | Rossetto 等[ |
绵羊 Sheep | 3D | 8 | 1%、2%藻酸盐包裹分离卵泡;玻璃化冷冻卵巢皮质,2%藻酸盐包裹玻璃化冷冻卵泡 | α-MEM、胰岛素转铁蛋白硒、FSH、生长分化因子-9 | 1%、2%藻酸盐组中包裹卵泡平均存活率分别为57.3%和41.8%,平均直径分别为41.9和54.06 μm;新鲜组或玻璃化冷冻组中卵泡平均活力分别为74.3%和65.1%,2%藻酸盐包裹新鲜或玻璃化冷冻卵泡平均活力为79.0%和60.6% | Sadeghnia 等[ |
| [1] | SCHVTZ L F, BATALHA I M. Granulosa cells: Central regulators of female fertility[J]. Endocrines, 2024, 5(4): 547-565. |
| [2] | NASCIMENTO D R, BARBALHO E C, BARROZO L G, et al. The mechanisms that control the preantral to early antral follicle transition and the strategies to have efficient culture systems to promote their growth in vitro [J]. Zygote, 2023, 31(4): 305-315. |
| [3] | CASARINI L, PARADISO E, LAZZARETTI C, et al. Regulation of antral follicular growth by an interplay between gonadotropins and their receptors[J]. Journal of Assisted Reproduction and Genetics, 2022, 39(4): 893-904. |
| [4] | CORTVRINDT R, SMITZ J. In vitro follicle growth: Achievements in mammalian species [J]. Reproduction in Domestic Animals, 2001, 36(1): 3-9. |
| [5] | EPPIG J J, O’BRIEN M J. Development in vitro of mouse oocytes from primordial follicles [J]. Biology of Reproduction, 1996, 54(1): 197-207. |
| [6] | O’BRIEN M J, PENDOLA J K, EPPIG J J. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence [J]. Biology of Reproduction, 2003, 68(5): 1682-1686. |
| [7] | GUPTA P, RAMESH H, MANJUNATHA B, et al. Production of buffalo embryos using oocytes from in vitro grown preantral follicles [J]. Zygote, 2008, 16(1): 57-63. |
| [8] | MAGALHAES D, DUARTE A, ARAUJO V, et al. In vitro production of a caprine embryo from a preantral follicle cultured in media supplemented with growth hormone [J]. Theriogenology, 2011, 75(1): 182-188. |
| [9] | ARUNAKUMARI G, SHANMUGASUNDARAM N, RAO V. Development of morulae from the oocytes of cultured sheep preantral follicles[J]. Theriogenology, 2010, 74(5): 884-894. |
| [10] | SARTORI R, CONSENTINI C E C, ALBES R, et al. Manipulation of follicle development to improve fertility of cattle in timed-artificial insemination programs[J]. Animal, 2023, 17: 100769. |
| [11] | MORTON A J, CANDELARIA J I, MCDONNELL S P, et al. Roles of follicle-stimulating hormone in preantral folliculogenesis of domestic animals: What can we learn from model species and where do we go from here?[J]. Animal, 2023, 17: 100743. |
| [12] | LODDE V, MONFERINI N, PLEVRIDI M, et al. Approaches to in vitro oocyte growth in domestic farm mammals: How and why?[J]. Animal Reproduction, 2025, 22(3): e20250090. |
| [13] | DEL BIANCO D, GENTILE R, SALLICANDRO L, et al. Electro-metabolic coupling of cumulus-oocyte complex[J]. International Journal of Molecular Sciences, 2024, 25(10): 5349. |
| [14] | ZHENG M, ANDERSEN C Y, RASMUSSEN F R, et al. Expression of genes and enzymes involved in ovarian steroidogenesis in relation to human follicular development[J]. Frontiers in Endocrinology, 2023, 14: 1268248. |
| [15] | BRAW-TAL R, YOSSEFI S. Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary [J]. Reproduction, 1997, 109(1): 165-171. |
| [16] | SAHA S, SHIMIZU M, GESHI M, et al. Comparison of enzymatic and mechanical methods for the collection of bovine preantral follicles [J]. Animal Science, 2002, 74(1): 155-161. |
| [17] | LUCCI C M, AMORIM C A, BAO S N, et al. Effect of the interval of serial sections of ovarian tissue in the tissue chopper on the number of isolated caprine preantral follicles [J]. Animal Reproduction Science, 1999, 56(1): 39-49. |
| [18] | AMORIM C, RODRIGUES A P R, LUCCI C M, et al. Effect of sectioning on the number of isolated ovine preantral follicles [J]. Small Ruminant Research, 2000, 37(3): 269-277. |
| [19] | LUCCI C M, RUMPF R, FIGUEIREDO J R, et al. Zebu (Bos indicus) ovarian preantral follicles: Morphological characterization and development of an efficient isolation method [J]. Theriogenology, 2002, 57(5): 1467-1483. |
| [20] | FIGUEIREDO J R, HULSHOF S, VAN DEN HURK R, et al. Development of a combined new mechanical and enzymatic method for the isolation of intact preantral follicles from fetal, calf and adult bovine ovaries [J]. Theriogenology, 1993, 40(4): 789-799. |
| [21] | SANTOS S, BIONDI F, CORDEIRO M, et al. Isolation, follicular density, and culture of preantral follicles of buffalo fetuses of different ages [J]. Animal Reproduction Science, 2006, 95(1-2): 1-15. |
| [22] | SHARMA G T, DUBEY P K, MEUR S. Effect of different mechanical isolation techniques on developmental competence and survival of buffalo ovarian preantral follicles [J]. Livestock Science, 2009, 123(2-3): 300-305. |
| [23] | GUTIERREZ C G, RALPH J H, TELFER E E, et al. Growth and antrum formation of bovine preantral follicles in long-term culture in vitro [J]. Biology of Reproduction, 2000, 62(5): 1322-1328. |
| [24] | TAMILMANI G, RAO B, VAGDEVI R, et al. Nuclear maturation of ovine oocytes in cultured preantral follicles [J]. Small Ruminant Research, 2005, 60(3): 295-305. |
| [25] | ROY S K, GREENWALD G S. Methods of separation and in vitro culture of pre-antral follicles from mammalian ovaries [J]. Human Reproduction Update, 1996, 2(3): 236-245. |
| [26] | KURVILA A. Cloning and sequencing of FSH receptor gene from buffalo preantral follicles[D]. Izatnagar:Deemed University, 2007. |
| [27] | NICOSIA S V, EVANGELISTA I, BATTA S K. Rabbit ovarian follicles. Isolation technique and characterization at different stages of development [J]. Biology of Reproduction, 1975, 13(4): 423-447. |
| [28] | MURUVI W, PICTON H, RODWAY R, et al. In vitro growth and differentiation of primary follicles isolated from cryopreserved sheep ovarian tissue [J]. Animal Reproduction Science, 2009, 112(1-2): 36-50. |
| [29] | LE B A M, NGUYEN L B L, NGUYEN P T, et al. Enzymatic isolation of porcine preantral follicles impairs oocyte viability and long-term in vitro growth[J]. Journal of Reproduction and Development, 2025, 71(3): 124-136. |
| [30] | ROY S K, GREENWALD G S. An enzymatic method for dissociation of intact follicles from the hamster ovary: Histological and quantitative aspects[J]. Biology of Reproduction, 1985, 32(1): 203-215. |
| [31] | NOBREGA JR J E DA, GONCALVES P B D, CHAVES R N, et al. Leukemia inhibitory factor stimulates the transition of primordial to primary follicle and supports the goat primordial follicle viability in vitro [J]. Zygote, 2012, 20(1): 73-78. |
| [32] | GUERREIRO D D, LIMA L F D, RODRIGUES G Q, et al. In situ cultured preantral follicles is a useful model to evaluate the effect of anticancer drugs on caprine folliculogenesis [J]. Microscopy Research and Technique, 2016, 79(8): 773-781. |
| [33] | PELUSO J, HIRSCHEL M. Factors controlling the growth of bovine primary and preantral follicles in perifusion culture [J]. Theriogenology, 1988, 30(3): 537-546. |
| [34] | TANG K, YANG W C, LI X, et al. GDF-9 and bFGF enhance the effect of FSH on the survival, activation, and growth of cattle primordial follicles [J]. Animal Reproduction Science, 2012, 131(3-4): 129-134. |
| [35] | BERTOLDO M J, DUFFARD N, BERNARD J, et al. Effects of bone morphogenetic protein 4 (BMP4) supplementation during culture of the sheep ovarian cortex [J]. Animal Reproduction Science, 2014, 149(3-4): 124-134. |
| [36] | LIMA I, CELESTINO J, FAUSTINO L, et al. Dynamic medium containing kit ligand and follicle-stimulating hormone promotes follicular survival, activation, and growth during long-term in vitro culture of caprine preantral follicles [J]. Cells Tissues Organs, 2012, 195(3): 260-271. |
| [37] | MCLAUGHLIN M, TELFER E E. Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system [J]. Reproduction, 2010, 139(6): 971-978. |
| [38] | JIMENEZ C R, ARAÚJO V R, PENITENTE-FILHO J M, et al. The base medium affects ultrastructure and survival of bovine preantral follicles cultured in vitro [J]. Theriogenology, 2016, 85(6): 1019-1029. |
| [39] | OLIVEIRA C P, SOUSA F C, SILVA A L, et al. Heat stress in dairy cows: Impacts, identification, and mitigation strategies—A review[J]. Animals, 2025, 15(2): 249. |
| [40] | PAES V, VIEIRA L, CORREIA H, et al. Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus-oocyte complex [J]. Theriogenology, 2016, 86(4): 994-1003. |
| [41] | SILVA J R V, LIMA F E O, SOUZA A L P, et al. Interleukin-1β and TNF-α systems in ovarian follicles and their roles during follicular development, oocyte maturation and ovulation[J]. Zygote, 2020, 28(4): 270-277. |
| [42] | SILVA A, RIBEIRO R, MENEZES V, et al. Expression of TNF-α system members in bovine ovarian follicles and the effects of TNF-α or dexamethasone on preantral follicle survival, development and ultrastructure in vitro [J]. Animal Reproduction Science, 2017, 182: 56-68. |
| [43] | ALMEIDA A P, MAGALHÃES-PADILHA D D M, ARAUJO V R, et al. Effect of sequential medium with fibroblast growth factor-10 and follicle stimulating hormone on in vitro development of goat preantral follicles [J]. Animal Reproduction Science, 2015, 152: 32-38. |
| [44] | EDIRISINGHE O, TERNIER G, ALRAAWI Z, et al. Decoding FGF/FGFR signaling: Insights into biological functions and disease relevance[J]. Biomolecules, 2024, 14(12): 1622. |
| [45] | CASTILHO A C S, PRICE C A, DALANEZI F, et al. Evidence that fibroblast growth factor 10 plays a role in follicle selection in cattle[J]. Reproduction, Fertility and Development, 2017, 29(2): 234-243. |
| [46] | PONTES J T, MASIDE C, LIMA L F, et al. Immunolocalization for glucocorticoid receptor and effect of cortisol on in vitro development of preantral follicles [J]. Veterinary and Animal Science, 2019, 7: 100060. |
| [47] | NAN W, ZHONGHANG X, KEYAN C, et al. Epigallocatechin-3-gallate reduces neuronal apoptosis in rats after middle cerebral artery occlusion injury via PI3K/Akt/eNOS signaling pathway [J]. BioMed Research International, 2018, 2018(1): 6473580. |
| [48] | BARBERINO R, SANTOS J, LINS T, et al. Epigallocatechin-3-gallate (EGCG) reduces apoptosis of preantral follicles through the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathway after in vitro culture of sheep ovarian tissue[J]. Theriogenology, 2020, 155: 25-32. |
| [49] | YU N H, PEI H, HUANG Y P, et al. (-)-epigallocatechin-3-gallate inhibits arsenic-induced inflammation and apoptosis through suppression of oxidative stress in mice [J]. Cellular Physiology and Biochemistry, 2017, 41(5): 1788-1800. |
| [50] | TAGHIZABET N, BAHMANPOUR S, FARD N Z, et al. In vitro growth of the ovarian follicle: Taking stock of advances in research[J]. JBAR Assisted Reproduction, 2022, 26(3): 508. |
| [51] | KHUNMANEE S, PARK H. Three-dimensional culture for in vitro folliculogenesis in the aspect of methods and materials[J]. Tissue Engineering Part, 2022, 28(6): 1242-1257. |
| [52] | ZHAO M, SUBUDENG G, ZHAO Y, et al. Effect of cyclic adenosine monophosphate on connexin 37 expression in sheep cumulus-oocyte complexes[J]. Journal of Developmental Biology, 2024, 12(2): 10. |
| [53] | KORDOWITZKI P, SOKOLOWSKA G, WASIELAK-POLITOWSKA M, et al. Pannexins and connexins: Their relevance for oocyte developmental competence[J]. International Journal of Molecular Sciences, 2021, 22(11): 5918. |
| [54] | SARAIVA M, ROSSETTO R, BRITO I, et al. Dynamic medium produces caprine embryo from preantral follicles grown in vitro [J]. Reproductive Sciences, 2010, 17: 1135-1143. |
| [55] | BARBONI B, RUSSO V, CECCONI S, et al. In vitro grown sheep preantral follicles yield oocytes with normal nuclear-epigenetic maturation [J]. PLoS One, 2011, 6(11): e27550. |
| [56] | DE AGUIAR L H, HYDE K A, PEDROZA G H, et al. Heat stress impairs in vitro development of preantral follicles of cattle [J]. Animal Reproduction Science, 2020, 213: 106277. |
| [57] | GOUVEIA B, ET A L, BARROS V,et al. Effect of ovarian tissue transportation in Amburana cearensis extract on the morphology and apoptosis of goat preantral follicles [J]. Animal Reproduction, 2018, 12(2): 316-323. |
| [58] | GOUVEIA B, MACEDO T, SANTOS J, et al. Supplemented base medium containing Amburana cearensis associated with FSH improves in vitro development of isolated goat preantral follicles [J]. Theriogenology, 2016, 86(5): 1275-1284. |
| [59] | SANTOS J, MONTE A, LINS T, et al. Kaempferol can be used as the single antioxidant in the in vitro culture medium, stimulating sheep secondary follicle development through the phosphatidylinositol 3-kinase signaling pathway [J]. Theriogenology, 2019, 136: 86-94. |
| [60] | ANDRADE K O, MONTE A P, SILVA R L, et al. Effect of lactose on the in vitro development of sheep secondary follicles [J]. Animal Reproduction Science, 2024, 270: 107578. |
| [61] | FERREIRA A C A, MASIDE C, SÁ N A R, et al. Balance of insulin and FSH concentrations improves the in vitro development of isolated goat preantral follicles in medium containing GH [J]. Animal Reproduction Science, 2016, 165: 1-10. |
| [62] | FERREIRA A C A, CADENAS J, SÁ N A R, et al. In vitro culture of isolated preantral and antral follicles of goats using human recombinant FSH: Concentration-dependent and stage-specific effect[J]. Animal Reproduction Science, 2018, 196: 120-129. |
| [63] | ROSSETTO R, SARAIVA M, BERNUCI M, et al. Impact of insulin concentration and mode of FSH addition on the in vitro survival and development of isolated bovine preantral follicles [J]. Theriogenology, 2016, 86(4): 1137-1145. |
| [64] | BELLI M, VIGONE G, MERICO V, et al. Towards a 3D culture of mouse ovarian follicles [J]. The International Journal of Developmental Biology, 2012, 56(10-12): 931-937. |
| [65] | TORRANCE C, TELFER E, GOSDEN R. Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture [J]. Reproduction, 1989, 87(1): 367-374. |
| [66] | SHARMA G T, DUBEY P K, MEUR S. Survival and developmental competence of buffalo preantral follicles using three-dimensional collagen gel culture system [J]. Animal Reproduction Science, 2009, 114(1-3): 115-124. |
| [67] | ARAUJO V, GASTAL M, WISCHRAL A, et al. In vitro development of bovine secondary follicles in two-and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone [J]. Theriogenology, 2014, 82(9): 1246-1253. |
| [68] | SILVA G D, ROSSETTO R, CHAVES R, et al. In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems [J]. Zygote, 2015, 23(4): 475-484. |
| [69] | SADEGHNIA S, AKHONDI M M, HOSSEIN G, et al. Development of sheep primordial follicles encapsulated in alginate or in ovarian tissue in fresh and vitrified samples [J]. Cryobiology, 2016, 72(2): 100-105. |
| [1] | 刘树林, 马惠茹, 杨瑞峰, 包志碧, 杭盖, 张灵然, 王佳欣, 杨东. 黄芪秸秆在反刍动物养殖中的应用研究进展[J]. 中国畜牧兽医, 2026, 53(1): 61-70. |
| [2] | 王茹, 王家豪, 欧靖渝, 汤文慧, 程箫, 王强军, 陈家宏, 张子军, 任春环. 抗氧化剂对反刍动物精液冷冻效果的影响[J]. 中国畜牧兽医, 2025, 52(7): 3242-3255. |
| [3] | 于向宇, 张桂杰, 陈晓东. 植物多糖生物活性及其在反刍动物生产中应用的研究进展[J]. 中国畜牧兽医, 2025, 52(6): 2626-2636. |
| [4] | 王泳, 马驰, 王超, 赵启南, 孙智鹏, 田丰, 王利, 金海, 李长青. miRNA和lncRNA调控反刍动物卵泡发育的分子机制研究进展[J]. 中国畜牧兽医, 2025, 52(2): 771-780. |
| [5] | 孙怡, 李帅, 谭昇, 杨宇峰, 李大刚, 闵力. 大型海藻在反刍动物生产中的应用[J]. 中国畜牧兽医, 2024, 51(6): 2440-2450. |
| [6] | 张峻豪, 匡磊, 雷镒妃, 赵天睿, 许灏钧, 陈斌, 王丹, 韦阳飞, 洪灯, 胡长敏. 免疫磁性分离技术在病原微生物检测中的应用[J]. 中国畜牧兽医, 2024, 51(5): 2219-2227. |
| [7] | 唐俊, 贺荔, 王彭辉, 何小龙, 易唤明, 程箫, 任春环, 陈家宏, 王强军, 张子军. 肠道微生物在反刍动物健康生产中的作用研究进展[J]. 中国畜牧兽医, 2024, 51(4): 1466-1479. |
| [8] | 郑洁怡, 杨舒黎, 赵开玲, 宫莉, 李川. 热应激对反刍动物瘤胃功能及潜在耐热标志物的影响[J]. 中国畜牧兽医, 2024, 51(3): 1041-1049. |
| [9] | 胡峻豪, 刘继兵, 周佳丽, 马悦, 赵洪喜. 牛球虫体外培养研究进展[J]. 中国畜牧兽医, 2024, 51(2): 700-708. |
| [10] | 李高龙, 吴兆海, 赵连生, 卜登攀, 王建平. 反刍动物甲烷减排研究进展[J]. 中国畜牧兽医, 2024, 51(11): 4812-4823. |
| [11] | 李晓鹏, 高鹏翔, 蒋林树, 屠焰. 牛至精油缓解反刍动物瘤胃甲烷排放的研究进展[J]. 中国畜牧兽医, 2024, 51(1): 106-113. |
| [12] | 陈宇, 刘俊阳, 穆卿, 卢泽宇, 李蕴华, 刘佳森, 吴子贤, 王浩源, 孙一文, 赵艳红. 长链非编码RNA调控牛科反刍动物相关经济性状的研究进展[J]. 中国畜牧兽医, 2024, 51(1): 203-211. |
| [13] | 潘晓婷, 李娟, 陈兵, 刘俊杰, 戚南山, 廖申权, 吕敏娜, 林栩慧, 蔡海明, 胡俊菁, 宋勇乐, 白银山, 孙铭飞. 鸡球虫体外培养模型及应用研究进展[J]. 中国畜牧兽医, 2024, 51(1): 292-301. |
| [14] | 严涵, 田仰清, 昂艳芬, 汪娅媛, 张学峰, 严玉霖. 犬造血干细胞分离、鉴定和培养特性研究[J]. 中国畜牧兽医, 2023, 50(7): 2678-2687. |
| [15] | 刘依莎, 许迟, 吴仙花, 李涛, 张巧娥. 发酵农副产品在反刍动物生产中的应用[J]. 中国畜牧兽医, 2023, 50(12): 4816-4825. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||