中国畜牧兽医 ›› 2026, Vol. 53 ›› Issue (2): 521-531.doi: 10.16431/j.cnki.1671-7236.2026.02.001
李伉(
), 陈思颍, 孙雅雯, 冷璇, 王栋(
), 庞云渭(
)
修回日期:2025-09-17
出版日期:2026-02-20
发布日期:2026-01-28
通讯作者:
王栋,庞云渭
E-mail:l2311123076@163.com;dwangcn2002@vip.sina.com;pangyunwei@caas.cn
作者简介:李伉,E-mail:l2311123076@163.com
基金资助:
LI Kang(
), CHEN Siying, SUN Yawen, LENG Xuan, WANG Dong(
), PANG Yunwei(
)
Revised:2025-09-17
Online:2026-02-20
Published:2026-01-28
Contact:
WANG Dong, PANG Yunwei
E-mail:l2311123076@163.com;dwangcn2002@vip.sina.com;pangyunwei@caas.cn
摘要:
卵母细胞玻璃化冷冻保存技术是保存优良畜禽种质资源和珍稀濒危物种的重要手段,也是推动品种改良和胚胎产业化生产的重要技术支撑。冷冻保护剂是玻璃化冷冻的关键媒介,通过降低溶液冰点、增加溶液黏度、抑制冰晶形成和重结晶、缓解渗透损伤等机制发挥保护作用。然而,冷冻保护剂的细胞毒性是玻璃化冷冻中亟待解决的核心问题之一。开发低毒、高效的新型冷冻保护剂已成为提高家畜卵母细胞玻璃化冷冻效率的重要研究方向。文章系统分析了传统冷冻保护剂对卵母细胞的毒性损伤机制,重点综述了小分子渗透调节剂、脂质调节剂、抗氧化剂及细胞骨架稳定剂等新型冷冻保护剂的应用进展,旨在为优化家畜卵母细胞玻璃化冷冻体系提供理论依据和技术参考。
中图分类号:
李伉, 陈思颍, 孙雅雯, 冷璇, 王栋, 庞云渭. 家畜卵母细胞玻璃化冷冻保护剂应用进展与优化策略[J]. 中国畜牧兽医, 2026, 53(2): 521-531.
LI Kang, CHEN Siying, SUN Yawen, LENG Xuan, WANG Dong, PANG Yunwei. Application Advance and Optimization Strategies in Cryoprotectant Agents for Vitrification of Livestock Oocytes[J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(2): 521-531.
表1
小分子渗透调节剂在家畜卵母细胞玻璃化冷冻中的应用"
小分子渗透调节剂 Small-molecule permeable cryoprotectants | 物种 Species | 冷冻阶段 Freezing stage | 处理方式Treatments | 评价指标 Evaluation indicators | 冷冻对照组 Frozen control group | 冷冻处理组 Frozen treatment group | 参考文献 References |
|---|---|---|---|---|---|---|---|
| 甘氨酸 Glycine | 猪 | GV | IVF | 囊胚率 | 2.5% | 11.0% | Tang等[ |
| 单峰骆驼 | GV | IVF | 囊胚率 | 12.0% | 18.5% | Yaqout等[ | |
| 绵羊 | GV | IVF | 囊胚率 | 6.2% | 10.4% | Ahmadi等[ | |
| 脯氨酸 Proline | 猪 | GV | PA | 囊胚率 | 5.4% | 13.5% | 孙雅雯[ |
| 谷氨酰胺 Glutamine | 牛 | GV | — | 细胞核成熟率 | 17.4% | 32.8% | Yamada等[ |
表2
脂质调节剂在家畜卵母细胞玻璃化冷冻中的应用"
脂质调节剂 Lipid modulators | 物种 Species | 冷冻阶段 Freezing stage | 处理方式Treatments | 评价指标 Evaluation indicators | 冷冻对照组 Frozen control group | 冷冻处理组 Frozen treatment group | 参考文献 References |
|---|---|---|---|---|---|---|---|
毛喉素 Forskolin | 猪 | MⅡ | PA | 存活率 | 51.7% | 65.3% | Fu等[ |
| 牛 | GV | IVF | 囊胚率 | 10.8% | 31.7% | Ezoe等[ | |
反式10,顺式共轭亚油酸 Trans-10, cis-12 conjugated linoleic acid | 牛 | MⅡ | IVF | 存活率 | 71.7% | 80.4% | Matos等[ |
| L-肉碱 L-carnitine | 牛 | MⅡ | IVF | 囊胚率 | 20.2% | 34.4% | Chankitisakul 等[ |
β-烟酰胺 β-nicotinamide mononucleotide | 牛 | MⅡ | IVF | 囊胚率 | 15.4% | 33.75% | Xu等[ |
| 草虫素 Cordycepin | 牛 | MⅡ | IVF | 囊胚率 | 13.2% | 23.6% | Xu等[ |
| 小檗碱 Berberine | 牛 | MⅡ | IVF | 囊胚率 | 12.5% | 25.0% | Xu等[ |
表3
抗氧化剂在家畜卵母细胞玻璃化冷冻中的应用"
抗氧化剂 Antioxidants | 物种 Species | 冷冻阶段 Freezing stage | 处理方式Treatments | 评价指标 Evaluation indicators | 冷冻对照组 Frozen control group | 冷冻处理组 Frozen treatment group | 参考文献 References |
|---|---|---|---|---|---|---|---|
白藜芦醇 Resveratrol | 牛 | MⅡ | IVF | 卵裂率 | 26.7% | 40.5% | Gutierrez-Castillo等[ |
| 牛 | GV | IVF | 囊胚率 | 15.8% | 33.3% | Zhang等[ | |
| 猪 | GV | PA | 存活率 | 60.6% | 77.3% | Ito等[ | |
| 猪 | GV | PA | 囊胚率 | 21.2% | 32.6% | Santos等[ | |
褪黑素 Melatonin | 猪 | GV | IVF | 囊胚率 | 2.5% | 14.2% | Tang等[ |
虾青素 Astaxanthin | 猪 | GV | PA | 囊胚率 | 14.1% | 21.3% | Xiang等[ |
辅酶Q10 Coenzyme Q10 | 牛 | GV | — | 存活率 | 57.9% | 77.2% | Ruiz-Conca 等[ |
槲皮素 Quercetin | 绵羊 | GV | IVF | 囊胚率 | 7.0% | 25.0% | Davoodian 等[ |
表4
细胞骨架稳定剂在家畜卵母细胞玻璃化冷冻中的应用"
细胞骨架稳定剂 Cytoskeleton stabilizers | 物种 Species | 冷冻阶段 Freezing stage | 处理方式 Treatments | 评价指标 Evaluation indicators | 冷冻对照组 Frozen control group | 冷冻处理组 Frozen treatment group | 参考文献 References |
|---|---|---|---|---|---|---|---|
紫杉醇 Paclitaxel | 牛 | MⅡ | IVF | 卵裂率 | 34.0% | 41.9% | Morató等[ |
| 猪 | MⅡ | — | 存活率 | 54.6% | 60.67% | Fu等[ | |
| 猪 | MⅡ | PA | 卵裂率 | 5.6% | 24.3% | Shi等[ | |
| 猪 | MⅡ | PA | 囊胚率 | 8.3% | 18.6% | Ogawa等[ | |
多西他赛 Docetaxel | 牛 | MⅡ | IVF | 囊胚率 | 27.3% | 39.3% | Pitchayapipatkul 等[ |
细胞松弛素B Cytochalasin B | 猪 | MⅡ | — | 存活率 | 35.1% | 44.2% | Hwang等[ |
| [1] | WHITTINGHAM D G. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at ―196 degrees C[J]. Journal of Reproduction and Fertility, 1977, 49(1): 89-94. |
| [2] | RALL W F, FAHY G M. Ice-free cryopreservation of mouse embryos at ―196 degrees C by vitrification[J]. Nature, 1985, 313(6003): 573-575. |
| [3] | PEREIRA R M, MARQUES C C. Animal oocyte and embryo cryopreservation[J]. Cell and Tissue Banking, 2008, 9(4): 267-277. |
| [4] | LOMBA L, GARCÍA C B, BENITO L, et al. Advances in cryopreservatives: Exploring safer alternatives[J]. ACS Biomaterials Science and Engineering, 2024, 10(1): 178-190. |
| [5] | BEST B P. Cryoprotectant toxicity: Facts, issues, and questions[J]. Rejuvenation Research, 2015, 18(5): 422-436. |
| [6] | WARNER R M, BROWN K S, BENSON J D, et al. Multiple cryoprotectant toxicity model for vitrification solution optimization[J]. Cryobiology, 2022, 108: 1-9. |
| [7] | OLVER D J, HERES P, PAREDES E, et al. Rational synthesis of total damage during cryoprotectant equilibration: Modelling and experimental validation of osmomechanical, temperature, and cytotoxic damage in sea urchin (Paracentrotus lividus) oocytes[J]. PeerJ, 2023, 11: e15539. |
| [8] | SCIORIO R, MANNA C, FAUQUE P, et al. Can cryopreservation in assisted reproductive technology (ART) induce epigenetic changes to gametes and embryos?[J]. Journal of Clinical Medicine, 2023, 12(13): 4444. |
| [9] | NACCACHE P, SHA’AFI R I. Patterns of nonelectrolyte permeability in human red blood cell membrane[J]. Journal of General Physiology, 1973, 62(6): 714-736. |
| [10] | WHALEY D, DAMYAR K, WITEK R P, et al. Cryopreservation: An overview of principles and cell-specific considerations[J]. Cell Transplantation, 2021, 30: 963689721999617. |
| [11] | WESTH P. Preferential interaction of dimethyl sulfoxide and phosphatidyl choline membranes[J]. Biochimica et Biophysica Acta, 2004, 1664(2): 217-223. |
| [12] | SALIM A S. Role of oxygen-derived free radical scavengers in the treatment of recurrent pain produced by chronic pancreatitis. A new approach[J]. Archives of Surgery, 1991, 126(9): 1109-1114. |
| [13] | SANMARTÍN-SUÁREZ C, SOTO-OTERO R, SÁNCHEZ-SELLERO I, et al. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants[J]. Journal of Pharmacological and Toxicological Methods, 2011, 63(2): 209-215. |
| [14] | LI X, WANG Y K, SONG Z Q, et al. Dimethyl sulfoxide perturbs cell cycle progression and spindle organization in porcine meiotic oocytes[J]. PLoS One, 2016, 11(6): e0158074. |
| [15] | CHENG H, HAN Y, ZHANG J, et al. Effects of dimethyl sulfoxide (DMSO) on DNA methylation and histone modification in parthenogenetically activated porcine embryos[J]. Reproduction, Fertility and Development, 2022, 34(8): 598-607. |
| [16] | GUPTA M K, UHM S J, LEE H T. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization[J]. Fertility and Sterility, 2010, 93(8): 2602-2607. |
| [17] | WILLIAMSON J R, CHANG K, FRANGOS M, et al. Hyperglycemic pseudohypoxia and diabetic complications[J]. Diabetes, 1993, 42(6): 801-813. |
| [18] | CHANG C C, SHAPIRO D B, NAGY Z P. The effects of vitrification on oocyte quality[J]. Biology of Reproduction, 2022, 106(2): 316-327. |
| [19] | AGUAYO-CERÓN K A, SÁNCHEZ-MUÑOZ F, GUTIERREZ-ROJAS R A, et al. Glycine: The smallest anti-inflammatory micronutrient[J]. International Journal of Molecular Sciences, 2023, 24(14): 11236. |
| [20] | ZHANG L, XUE X, YAN J, et al. Cryobiological characteristics of L-proline in mammalian oocyte cryopreservation[J]. Chinese Medical Journal, 2016, 129(16): 1963-1968. |
| [21] | YAMADA C, FEITOSA W B, SIMÕES R, et al. Vitrification with glutamine improves maturation rate of vitrified/warmed immature bovine oocytes[J]. Reproduction in Domestic Animals, 2011, 46(1): 173-176. |
| [22] | KHALID M, REHMAN H M, AHMED N, et al. Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops[J]. International Journal of Molecular Sciences, 2022, 23(21): 12913. |
| [23] | ZANDER-FOX D, CASHMAN K S, LANE M. The presence of 1 mm glycine in vitrification solutions protects oocyte mitochondrial homeostasis and improves blastocyst development[J]. Journal of Assisted Reproduction and Genetics, 2013, 30(1): 107-116. |
| [24] | TANG Y, ZHANG Y, LIU L, et al. Glycine and melatonin improve preimplantation development of porcine oocytes vitrified at the germinal vesicle stage[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 856486. |
| [25] | 唐毓, 张颖, 杨镒峰, 等. 甘氨酸提高水貂卵母细胞玻璃化冷冻保存效率的关键机制[J]. 畜牧兽医学报, 2025, 56(7): 3265-3277. |
| TANG Y, ZHANG Y, YANG Y F, et al. Mechanisms of glycine improving vitrification cryopreservation efficiency of mink oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3265-3277. (in Chinese) | |
| [26] | CAO X Y, ROSE J, WANG S Y, et al. Glycine increases preimplantation development of mouse oocytes following vitrification at the germinal vesicle stage[J]. Scientific Reports, 2016, 6: 37262. |
| [27] | YAQOUT K A, BARD M R, EL-WISHY A B A, et al. Influences of glycine supplementation during vitrification on the developmental potential of vitrified/warmed immature dromedary camel oocytes[J]. Reproduction in Domestic Animals, 2023, 58(5): 614-621. |
| [28] | AHMADI E, SHIRAZI A, SHAMS-ESFANDABADI N, et al. Antioxidants and glycine can improve the developmental competence of vitrified/warmed ovine immature oocytes[J]. Reproduction in Domestic Animals, 2019, 54(3): 595-603. |
| [29] | MARSICO T V, DE CAMARGO J, VALENTE R S, et al. Embryo competence and cryosurvival: Molecular and cellular features[J]. Animal Reproduction, 2019, 16(3): 423-439. |
| [30] | KOŠTÁL V, KORBELOVÁ J, POUPARDIN R, et al. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of drosophila melanogaster[J]. Journal of Experimental Biology, 2016, 219(15): 2358-2367. |
| [31] | ZHANG L, XUE X, YAN J, et al. L-proline: A highly effective cryoprotectant for mouse oocyte vitrification[J]. Scientific Reports, 2016, 6: 26326. |
| [32] | LI Y, SI W, ZHANG X, et al. Effect of amino acids on cryopreservation of cynomolgus monkey (Macaca fascicularis) sperm[J]. American Journal of Primatology, 2003, 59(4): 159-165. |
| [33] | 孙雅雯. L-脯氨酸在猪卵母细胞玻璃化冷冻保存中的应用研究[D]. 北京: 中国农业科学院, 2024. |
| SUN Y W. Study on the application of L-proline in vitrification of porcine oocytes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024. (in Chinese) | |
| [34] | LEAL G R, OLIVEIRA T A, DE PAULA GUIMARÃES M P, et al. Lipid modulation during IVM increases the metabolism and improves the cryosurvival of cat oocytes[J]. Theriogenology, 2024, 214: 33-42. |
| [35] | ZOLINI A M, CARRASCAL-TRIANA E, RUIZ DE KING A, et al. Effect of addition of L-carnitine to media for oocyte maturation and embryo culture on development and cryotolerance of bovine embryos produced in vitro [J]. Theriogenology, 2019, 133: 135-143. |
| [36] | XU X, YANG B, ZHANG H, et al. Effects of β-nicotinamide mononucleotide, berberine, and cordycepin on lipid droplet content and developmental ability of vitrified bovine oocytes[J]. Antioxidants, 2023, 12(5): 991. |
| [37] | RAMOS LEAL G, SANTOS MONTEIRO C A, SOUZA-FABJAN J M G, et al. Role of camp modulator supplementations during oocyte in vitro maturation in domestic animals[J]. Animal Reproduction Science, 2018, 199: 1-14. |
| [38] | FU X W, WU G Q, LI J J, et al. Positive effects of forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes[J]. Theriogenology, 2011, 75(2): 268-275. |
| [39] | KIM J Y, KINOSHITA M, OHNISHI M, et al. Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes[J]. Reproduction, 2001, 122(1): 131-138. |
| [40] | DIAS L R O, LEME L O, SPRICIGO J F W, et al. Effect of delipidant agents during in vitro culture on the development, lipid content, gene expression and cryotolerance of bovine embryos[J]. Reproduction in Domestic Animals, 2020, 55(1): 11-20. |
| [41] | ABAZARIKIA A H, ZHANDI M, SHAKERI M, et al. In vitro supplementation of trans-10, cis-12 conjugated linoleic acid ameliorated deleterious effect of heat stress on bovine oocyte developmental competence[J]. Theriogenology, 2020, 142: 296-302. |
| [42] | MATOS J E, MARQUES C C, MOURA T F, et al. Conjugated linoleic acid improves oocyte cryosurvival through modulation of the cryoprotectants influx rate[J]. PLoS One, 2015, 13: 60. |
| [43] | MORATÓ R, CASTILLO-MARTÍN M, YESTE M, et al. Cryotolerance of porcine in vitro-produced blastocysts relies on blastocyst stage and length of in vitro culture prior to vitrification[J]. Reproduction, Fertility and Development, 2016, 28(7): 886-892. |
| [44] | SUTTON-MCDOWALL M L, FEIL D, ROBKER R L, et al. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos[J]. Theriogenology, 2012, 77(8): 1632-1641. |
| [45] | ABDELRAZIK H, SHARMA R, MAHFOUZ R, et al. L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos[J]. Fertility and Sterility, 2009, 91(2): 589-596. |
| [46] | XU H, JIA C, CHENG W, et al. The effect of L-carnitine additive during in vitro maturation on the vitrification of pig oocytes[J]. Cellular Reprogramming, 2020, 22(4): 198-207. |
| [47] | EZOE K, YABUUCHI A, TANI T, et al. Developmental competence of vitrified-warmed bovine oocytes at the germinal-vesicle stage is improved by cyclic adenosine monophosphate modulators during in vitro maturation[J]. PLoS One, 2015, 10(5): e0126801. |
| [48] | CHANKITISAKUL V, SOMFAI T, INABA Y, et al. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes[J]. Theriogenology, 2013, 79(4): 590-598. |
| [49] | GUTNISKY C, MORADO S, GADZE T, et al. Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification[J]. Theriogenology, 2020, 143: 18-26. |
| [50] | SASAKI H, HAMATANI T, KAMIJO S, et al. Impact of oxidative stress on age-associated decline in oocyte developmental competence[J]. Frontiers in Endocrinology, 2019, 10: 811. |
| [51] | ZHU Y, LIU H, ZHENG L, et al. Vitrification of mammalian oocytes: Recent studies on mitochondrial dysfunction[J]. Biopreservation and Biobanking, 2024, 22(5): 428-440. |
| [52] | SITHARA T, DROSATOS K. Metabolic complications in cardiac aging[J]. Frontiers in Physiology, 2021, 12: 669497. |
| [53] | ZHU Y, LI J, ZHOU G, et al. Resveratrol-loaded plga enhanced vitrified oocyte viability through rab11fip4/Arf5-mediated internalization route[J]. ACS Applied Materials and Interfaces, 2025, 17(31): 44160-44177. |
| [54] | KANDIL O M, RAHMAN S, ALI R S, et al. Effect of melatonin on developmental competence, mitochondrial distribution, and intensity of fresh and vitrified/thawed in vitro matured buffalo oocytes[J]. Reproductive Biology and Endocrinology, 2024, 22(1): 39. |
| [55] | DUJIČKOVÁ L, OLEXIKOVÁ L, MAKAREVICH A V, et al. Astaxanthin added during post-warm recovery mitigated oxidative stress in bovine vitrified oocytes and improved quality of resulting blastocysts[J]. Antioxidants, 2024, 13(5): 556. |
| [56] | RUIZ-CONCA M, VENDRELL M, SABÉS-ALSINA M, et al. Coenzyme Q(10) supplementation during in vitro maturation of bovine oocytes (Bos taurus) helps to preserve oocyte integrity after vitrification[J]. Reproduction in Domestic Animals, 2017, 52(4): 52-54. |
| [57] | DAVOODIAN N, KADIVAR A, AHMADI E, et al. Quercetin effect on the efficiency of ovine oocyte vitrification at GV stage[J]. Theriogenology, 2021, 174: 53-59. |
| [58] | FERNANDES G F S, SILVA G D B, PAVAN A R, et al. Epigenetic regulatory mechanisms induced by resveratrol[J]. Nutrients, 2017, 9(11): 1201. |
| [59] | GUTIERREZ-CASTILLO E, DIAZ F A, TALBOT S A, et al. Effect of bovine oocyte vitrification with egta and post-warming recovery with resveratrol on meiotic spindle, mitochondrial function, reactive oxygen species, and developmental competence[J]. Theriogenology, 2023, 196: 59-67. |
| [60] | ZHANG P, YANG S, ZHANG H, et al. Vitrification of bovine germinal vesicle oocytes significantly decreased the methylation level of their in vitro derived MⅡ oocytes[J]. Reproduction in Domestic Animals, 2022, 34(13): 889-903. |
| [61] | COSME P, RODRÍGUEZ A B, GARRIDO M, et al. Coping with oxidative stress in reproductive pathophysiology and assisted reproduction: Melatonin as an emerging therapeutical tool[J]. Antioxidants, 2022, 12(1): 86. |
| [62] | JI P, LIU Y, YAN L, et al. Melatonin improves the vitrification of sheep morulae by modulating transcriptome[J]. Frontiers in Veterinary Science, 2023, 10: 1212047. |
| [63] | ZHANG P, YANG B, XU X, et al. Combination of CNP, MT and FLI during IVM significantly improved the quality and development abilities of bovine oocytes and IVF-derived embryos[J]. Antioxidants, 2023, 12(4): 897. |
| [64] | ZHAO X M, HAO H S, DU W H, et al. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes[J]. Journal of Pineal Research, 2016, 60(2): 132-141. |
| [65] | ZHANG Z, MU Y, DING D, et al. Melatonin improves the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma[J]. Journal of Pineal Research, 2021, 70(2): e12707. |
| [66] | SUN J, LI J, WANG Y, et al. Astaxanthin protects oocyte maturation against cypermethrin-induced defects in pigs[J]. Theriogenology, 2023, 209: 31-39. |
| [67] | XIANG D C, JIA B Y, FU X W, et al. Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes[J]. Theriogenology, 2021, 167: 13-23. |
| [68] | GENDELMAN M, ROTH Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J]. Biology of Reproduction, 2012, 87(5): 118. |
| [69] | CRANE F L. Biochemical functions of coenzyme Q10[J]. Journal of the American College of Nutrition, 2001, 20(6): 591-598. |
| [70] | KANG J T, KWON D K, PARK S J, et al. Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels[J]. Journal of Veterinary Science, 2013, 14(1): 15-20. |
| [71] | ITO J, SHIRASUNA K, KUWAYAMA T, et al. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes[J]. Cryobiology, 2020, 93: 37-43. |
| [72] | SANTOS E, APPELTANT R, DANG-NGUYEN T Q, et al. The effect of resveratrol on the developmental competence of porcine oocytes vitrified at germinal vesicle stage[J]. Reproduction in Domestic Animals, 2018, 53(2): 304-312. |
| [73] | PAPIS K, SHIMIZU M, IZAIKE Y. Factors affecting the survivability of bovine oocytes vitrified in droplets[J]. Theriogenology, 2000, 54(5): 651-658. |
| [74] | PITCHAYAPIPATKUL J, SOMFAI T, MATOBA S, et al. Microtubule stabilisers docetaxel and paclitaxel reduce spindle damage and maintain the developmental competence of in vitro-mature bovine oocytes during vitrification[J]. Reproduction, Fertility and Development, 2017, 29(10): 2028-2039. |
| [75] | WANG C L, XU H Y, XIE L, et al. Stability of the cytoskeleton of matured buffalo oocytes pretreated with cytochalasin b prior to vitrification[J]. Cryobiology, 2016, 72(3): 274-282. |
| [76] | FESAHAT F, FARAMARZI A, KHORADMEHR A, et al. Vitrification of mouse MⅡ oocytes: Developmental competency using paclitaxel[J]. Taiwanese Journal of Obstetrics and Gynecology, 2016, 55(6): 796-800. |
| [77] | MORATÓ R, MOGAS T, MADDOX-HYTTEL P. Ultrastructure of bovine oocytes exposed to taxol prior to OPS vitrification[J]. Molecular Reproduction and Development, 2008, 75(8): 1318-1326. |
| [78] | MORATÓ R, IZQUIERDO D, ALBARRACÍN J L, et al. Effects of pre-treating in vitro-matured bovine oocytes with the cytoskeleton stabilizing agent taxol prior to vitrification[J]. Molecular Reproduction and Development, 2008, 75(1): 191-201. |
| [79] | GIRKA E, GATENBY L, GUTIERREZ E J, et al. The effects of microtubule stabilizing and recovery agents on vitrified bovine oocytes[J]. Theriogenology, 2022, 182: 9-16. |
| [80] | FU X W, SHI W Q, ZHANG Q J, et al. Positive effects of taxol pretreatment on morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrification of in vitro matured porcine oocytes[J]. Animal Reproduction Science, 2009, 115(1-4): 158-168. |
| [81] | SHI W Q, ZHU S E, ZHANG D, et al. Improved development by taxol pretreatment after vitrification of in vitro matured porcine oocytes[J]. Reproduction, 2006, 131(4): 795-804. |
| [82] | TONE M, UKYO R, SAKAMOTO S H, et al. Effects of paclitaxel before vitrification on the nuclear maturation and development of immature porcine oocytes[J]. Cryoletters, 2023, 44(5): 307-313. |
| [83] | CHASOMBAT J, NAGAI T, PARNPAI R, et al. Pretreatment of in vitro matured bovine oocytes with docetaxel before vitrification: Effects on cytoskeleton integrity and developmental ability after warming[J]. Cryobiology, 2015, 71(2): 216-223. |
| [84] | HWANG I S, PARK M R, KWAK T U, et al. Effect of cytochalasin b treatment on the improvement of survival rate in vitrified pig oocyte[J]. Molecular Reproduction and Development, 2018, 22(3): 245-252. |
| [85] | OGAWA B, UENO S, NAKAYAMA N, et al. Developmental ability of porcine in vitro matured oocytes at the meiosis Ⅱ stage after vitrification[J]. Journal of Reproduction and Development, 2010, 56(3): 356-361. |
| [1] | 邓双义, 高莉, 杨力伟, 刘晓娜, 宁程程, 张文杰, 高家良, 王世银, 张伟. 动物精子冷冻损伤及耐冻性差异机制研究进展[J]. 中国畜牧兽医, 2025, 52(7): 3202-3213. |
| [2] | 陈丹丹, 齐雅天, 李俊杰. 卵母细胞玻璃化冷冻保存中凋亡的机制及缓解策略[J]. 中国畜牧兽医, 2025, 52(6): 2729-2735. |
| [3] | 高子浩, 李嘉, 张琳惠, 张慈, 刘炳男, 李俊杰, 夏威. 线粒体在家畜卵母细胞成熟过程中的调控机制研究进展[J]. 中国畜牧兽医, 2025, 52(5): 2232-2242. |
| [4] | 李卓, 王培, 郭建雄, 张雄, 赵红芳, 角德灵, 贾宝瑜, 卿玉波, 成文敏, 奎华, 魏红江. 猪卵母细胞形态及质量对体细胞核移植胚胎发育的影响[J]. 中国畜牧兽医, 2025, 52(12): 5785-5796. |
| [5] | 吴兴萍, 张海琳, 刘雪芹, 丁玉春, 丁川翔, 罗林, 吴梦. 猪体细胞核移植效率的提高策略[J]. 中国畜牧兽医, 2025, 52(12): 5829-5838. |
| [6] | 郑湘民, 王玉琪, 徐冰洁, 孙朝阳, 高青山, 方南洙, 金庆国. 千金藤素对牛体外卵母细胞和早期胚胎抗凋亡能力的影响[J]. 中国畜牧兽医, 2024, 51(7): 2943-2952. |
| [7] | 莫显红, 李俊杰, 郭成, 温诏禹, 邹宇柱, 赵文博, 徐振军. 家畜卵母细胞玻璃化冷冻损伤研究进展[J]. 中国畜牧兽医, 2024, 51(6): 2524-2532. |
| [8] | 罗安凤, 华再东, 杨彩侠, 陈矾. 核膜孔亚复合物Nup98/Rae1对小鼠卵母细胞体外减数分裂成熟的影响[J]. 中国畜牧兽医, 2024, 51(5): 1998-2006. |
| [9] | 李有为, 程亚倬, 商继勇, 张廷龙, 孙铭菊. 哺乳动物小卵泡卵母细胞体外成熟的研究进展[J]. 中国畜牧兽医, 2024, 51(3): 1171-1182. |
| [10] | 杜倩笙, 刘可可, 唐非台, 唐小川, 何家康, 王晓丽. 绞股蓝多糖对H2O2损伤小鼠卵母细胞及线粒体的保护作用[J]. 中国畜牧兽医, 2024, 51(12): 5371-5379. |
| [11] | 英提扎尔·阿不力孜, 郭延华, 艾日夏提·地里夏提, 艾克拜尔·艾合麦提, 妮格尔阿依·安尼瓦尔, 王旭光, 阿布力孜·吾斯曼. 单宁酸缓解氟化钠诱导小鼠卵母细胞氧化应激的研究[J]. 中国畜牧兽医, 2024, 51(10): 4246-4254. |
| [12] | 刘可可, 薛梦琦, 唐非台, 杜倩笙, 王欣雨, 董胤余, 王晓丽. 抗冷冻蛋白Ⅲ对玻璃化冷冻小鼠卵母细胞线粒体的影响[J]. 中国畜牧兽医, 2023, 50(8): 3180-3188. |
| [13] | 张笑梦, 焦安惠, 王玉琪, 方南洙, 金庆国. 添加罗格列酮对小鼠卵母细胞氧化还原稳态的影响[J]. 中国畜牧兽医, 2023, 50(5): 1818-1827. |
| [14] | 黎明国, 李清春, 陈鑫, 卢世豪, 何凡, 祁梦凡, 张化鹏, 任玉军, 张庆泽, 符彬彬, 徐梦思, 艾子凯, 闫坤, 冯赟, 华再东, 黄涛, 毕延震. TET去甲基化酶对猪卵母细胞发育的影响[J]. 中国畜牧兽医, 2023, 50(5): 1907-1917. |
| [15] | 唐毓, 杨镒峰, 张颖, 薛海龙, 冯怀亮, 许保增. 貉卵母细胞成熟发育的细胞学研究[J]. 中国畜牧兽医, 2023, 50(4): 1434-1443. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||