中国畜牧兽医 ›› 2025, Vol. 52 ›› Issue (7): 3202-3213.doi: 10.16431/j.cnki.1671-7236.2025.07.021
邓双义, 高莉, 杨力伟, 刘晓娜, 宁程程, 张文杰, 高家良, 王世银, 张伟
收稿日期:
2024-11-18
出版日期:
2025-07-05
发布日期:
2025-07-01
通讯作者:
王世银, 张伟
E-mail:wangshiyinxjnzy@163.com;zhangweigsau@163.com
作者简介:
邓双义,E-mail:dengshuangyixjnzd@163.com。
基金资助:
DENG Shuangyi, GAO Li, YANG Liwei, LIU Xiaona, NING Chengcheng, ZHANG Wenjie, GAO Jialiang, WANG Shiyin, ZHANG Wei
Received:
2024-11-18
Online:
2025-07-05
Published:
2025-07-01
摘要: 动物冷冻精液由于具有可长期保存、远距离运输和安全高效等优势,在动物种质资源保存、濒危物种保护和畜禽跨区域联合育种等领域具有非常广阔的应用前景。精子作为一个高度分化的细胞,在冷冻过程中其结构会受到不同程度的损伤,造成其膜结构的完整性、流动性和选择通透性,以及膜脂质、蛋白质和RNA等分子的构成和机能发生改变,进而直接影响精子的冻后活力。同时,精子的耐冻性又受到物种、品种、季节和营养等因素的影响而存在较大的差异。但由于对精子冷冻损伤、耐冻性及其影响因素等基础性科学问题仍缺乏清晰的认识,除牛外的其他动物,现有的精液冷冻技术仍无法生产出可应用于实际生产的冷冻精液,这给通过冷冻精液开展这些动物种质资源保存,以及使用冷冻精液人工授精技术开展动物品种遗传改良和新品种培育造成了很大的困难。所以,加强相关问题的基础研究,并针对性开发高效冷冻保存体系,最大限度地减少精子的冷冻损伤,提高精子的冻后活力,将对该技术的推广应用产生积极的推动作用。作者综述了近年来在动物精子冷冻损伤和耐冻性差异机制方面的研究进展,旨在为相关研究的深入开展提供参考。
中图分类号:
邓双义, 高莉, 杨力伟, 刘晓娜, 宁程程, 张文杰, 高家良, 王世银, 张伟. 动物精子冷冻损伤及耐冻性差异机制研究进展[J]. 中国畜牧兽医, 2025, 52(7): 3202-3213.
DENG Shuangyi, GAO Li, YANG Liwei, LIU Xiaona, NING Chengcheng, ZHANG Wenjie, GAO Jialiang, WANG Shiyin, ZHANG Wei. Research Progress on Mechanisms of Cryodamage and Differential Cryotolerance of Animal Sperm[J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3202-3213.
[1] POLGE C,SMIIH A U,PARKES A S.Revival of spermatozoa after vitrification and dehydration at low temperatures[J].Nature,1949,164(4172):666. [2] BAILEY J,MORRIER A,CORMIER N.Semen cryopreservation:Successes and persistent problems in farm species[J].Canadian Journal of Animal Science,2003,83(3):393-401. [3] FICKEL J,WAGENER A,LUDWIG A.Semen cryopreservation and the conservation of endangered species[J].European Journal of Wildlife Research,2007,53:81-89. [4] KUMAR A,PRASAD J K,SRIVASTAVA N,et al.Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa[J].Biopreservation and Biobanking, 2019,17(6):603-612. [5] VEERKAMP R F,BEERDA B.Genetics and genomics to improve fertility in high producing dairy cows[J].Theriogenology,2007,68(S1):S266-S273. [6] YÁNEZ-ORTIZ I,CATALÁN J,RODRÍGUEZ-GIL J E,et al.Advances in sperm cryopreservation in farm animals:Cattle,horse,pig and sheep[J].Animal Reproduction Science,2022,246:106904. [7] KHAN I M,CAO Z,LIU H,et al.Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance OMICS to assess sperm cryo-tolerance in farm animals[J].Frontiers in Veterinary Science,2021,8:609180. [8] SIEME H,OLDENHOF H,WOLKERS W F.Sperm membrane behavior during cooling and cryopreservation[J].Reproduction in Domestic Animals,2015,50(S1):20-26. [9] 张展,赵俊金,李静,等.品种、月龄、季节因素对猪精液冷冻效果的影响[J].中国畜牧杂志,2024,60(1):378-382.ZHANG Z,ZHAO J J,LI J,et al.Effects of breed,age and season on freezing effect of pig sperm[J].Chinese Journal of Animal Science,2024,60(1):378-382.(in Chinese) [10] NIJS M,CREEMERS E,COX A,et al.Influence of freeze-thawing on hyaluronic acid binding of human spermatozoa[J].Reproductive Biomedicine Online,2009,19(2):202-206. [11] OLDENHOF H,WOLKERS W F,SIEME H.Cryopreservation of semen from domestic livestock:Bovine,equine,and porcine sperm[J].Methods in Molecular Biology,2021, 2180:365-377. [12] ERIKSSON B M,RODRIGUEZ-MARTINEZ H.Effect of freezing and thawing rates on the post-thaw viability of boar spermatozoa frozen in flat-packs and maxi-straws[J].Animal Reproduction Science,2000,63(3-4):205-220. [13] ROCA J,VÁZQUEZ J M,GIL M A,et al.Challenges in pig artificial insemination[J].Reproduction in Domestic Animals,2006,41(S2):43-53. [14] 张勤,曾勇庆.非洲猪瘟背景下猪育种策略探讨[J].猪业科学,2020,37(12):46-49.ZHAGN Q,ZENG Y Q.Discussion on pig breeding strategy in the context of African swine fever[J].Swine Industry Science,2020,37(12):46-49.(in Chinese) [15] 李光鹏,李俊龙,旭日干.北方草原牧业发展现状与草原生态畜牧业发展研究初探[J].内蒙古农业大学学报(自然科学版),2013,44(4):435-440.LI G P,LI J L,XU R G.Development state of grassland animal husbandry in northern China and the preliminary study of the grassland ecological animal husbandry[J].Journal of Inner Mongolia University (Natural Science Edition),2013,44(4):435-440.(in Chinese) [16] MAZUR P,LEIBO S P,SEIDEL G E.Cryopreservation of the germplasm of animals used in biological and medical research:Importance,impact,status,and future directions[J].Biology of Reproduction,2008,78(1):2-12. [17] MORRIS G J,ACTON E,MURRAY B J,et al.Freezing injury:The special case of the sperm cell[J].Cryobiology,2012,64(2):71-80. [18] YESTE M.Sperm cryopreservation update:Cryodamage,markers,and factors affecting the sperm freezability in pigs[J].Theriogenology,2016,85(1):47-64. [19] LIN H H,MERMILLOD P,GRASSEAU I,et al.Is glycerol a good cryoprotectant for sperm cells? New exploration of its toxicity using avian model[J].Animal Reproduction Science,2023,258:107330. [20] ALAHMAR A T.Role of oxidative stress in male infertility:An updated review[J].Journal of Human Reproductive Sciences,2019,12(1):4-18. [21] PAPAS M,CATALÁN J,FERNANDEZ-FUERTES B,et al.Specific activity of superoxide dismutase in stallion seminal plasma is related to sperm cryotolerance[J].Antioxidants,2019,8(11):539. [22] CATALÁN J,YÁNEZ-ORTIZ I,TVARIJONAVICIUTE A,et al.Impact of seminal plasma antioxidants on donkey sperm cryotolerance[J].Antioxidants,2022,11(2):417. [23] CHATTERJEE S,DE LAMIRANDE E,GAGNON C.Cryopreservation alters membrane sulfhydryl status of bull spermatozoa:Protection by oxidized glutathione[J].Molecular Reproduction and Development, 2001,60(4):498-506. [24] PINI T,LEAHY T,DE GRAAF S P.Sublethal sperm freezing damage:Manifestations and solutions[J].Theriogenology, 2018,118:172-181. [25] MARTIN-HIDALGO D,BRAGADO M J,BATISTA A R,et al.Antioxidants and male fertility:From molecular studies to clinical evidence[J].Antioxidants, 2019,8(4):89. [26] PERIS-FRAU P,ÁLVAREZ-RODRÍGUEZ M,MARTÍN-MAESTRO A,et al.Comparative evaluation of DNA integrity using sperm chromatin structure assay and sperm-ovis-halomax during in vitro capacitation of cryopreserved ram spermatozoa[J].Reproduction in Domestic Animals, 2019,54(s4):46-49. [27] CHEN X,WANG Y,ZHU H,et al.Comparative transcript profiling of gene expression of fresh and frozen-thawed bull sperm[J].Theriogenology, 2015,83(4):504-511. [28] AURICH C,SCHREINER B,ILLE N,et al.Cytosine methylation of sperm DNA in horse semen after cryopreservation[J].Theriogenology, 2016,86(5):1347-1352. [29] OTTIZ-RODRIGUEZ J M,ORTEGA-FERRUSOLA C,GIL M C,et al.Transcriptome analysis reveals that fertilization with cryopreserved sperm downregulates genes relevant for early embryo development in the horse[J].PLoS One, 2019,14(6):e0213420. [30] MATEO-OTERO Y,LLAVANERA M,RECUERO S,et al.Sperm DNA damage compromises embryo development,but not oocyte fertilisation in pigs[J].Biological Research,2022,55(1):15. [31] PEZO F,ZAMBRANO F,URIBE P,et al.Oxidative and nitrosative stress in frozen-thawed pig spermatozoa.Ⅱ:Effect of the addition of saccharides to freezing medium on sperm function[J].Cryobiology, 2020,97:5-11. [32] 吕松洁,付丽,范文华,等.线粒体靶向抗氧化剂Mitoquinone对湖羊冻精损伤的保护作用[J].畜牧兽医学报,2019,50(12):2554-2559.LYU S J,FU L,FAN W H,et al.Protective effect of mitochondria-targeted antioxidant Mitoquinone on the damage of Hu sheep frozen sperm[J].Acta Veterinaria et Zootechnica Scinica,2019,50(12):2554-2559.(in Chinese) [33] GAUTIER C,AURICH C.“Fine feathers make fine birds”—The mammalian sperm plasma membrane lipid composition and effects on assisted reproduction[J].Animal Reproduction Science,2022,246:106884. [34] BROWN D A,LONDON E.Structure and function of sphingolipid- and cholesterolrich membrane rafts[J].Journal of Biological Chemistry,2000,275(23):17221-17224. [35] OLDENHOF H,HEUTELBECK A,BLÄSSE A K,et al.Tolerance of spermatozoa to hypotonic stress:role of membrane fluidity and correlation with cryosurvival[J].Reproduction,Fertility,and Development,2015,27(2):285-293. [36] OLENHOF H,GOJOWSKY M,WANG S,et al.Osmotic stress and membrane phase changes during freezing of stallion sperm:Mode of action of cryoprotective agents[J].Biology of Reproduction,2013,88(3):68. [37] GRÖTTER L G,CATTANEO L,ESTELA P,er al.Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization[J].Reproduction in Domestic Animals, 2019,54(4):655-665. [38] RAJORIYA J S,PRASAD J K,RAMTEKE S S,et al.Enriching membrane cholesterol improves stability and cryosurvival of buffalo spermatozoa[J].Animal Reproduction Science,2016,164:72-81. [39] MOCÉ E,PURDY P H,GRAHAM J K.Treating ram sperm with cholesterol-loaded cyclodextrins improves cryosurvival[J].Animal Reproduction Science,2010,118(2-4):236-247. [40] ZHANG S,ZHANG H,LIU K,et al.Effect of cholesterol-loaded cyclodextrin treatment on boar sperm cryopreservation[J].Animal Bioscience,2024,37(9):1558-1567. [41] USHIYAMA A,ISHIKAWA N,TAJIMA A,et al.Comparison of membrane characteristics between freshly ejaculated and cryopreserved sperm in the chicken[J].The Journal of Poultry Science,2016,53(4):305-312. [42] PEA F J,O’FLAHERTY C,RODRÍGUEZ J,et al.Redox regulation and oxidative stress:The particular case of the stallion spermatozoa[J].Antioxidants, 2019,8(11):567. [43] SHAHIN M A,KHALIL W A,SAADELDIN I M,et al.Comparison between the effects of adding vitamins,trace elements,and nanoparticles to SHOTOR extender on the cryopreservation of dromedary camel epididymal spermatozoa[J].Animals, 2020,10(1):78. [44] SUN L,HE M,WU C,et al.Beneficial influence of soybean lecithin nanoparticles on rooster frozen-thawed semen quality and fertility[J].Animals, 2021,11(6):1769. [45] FINKELSTEIN M,MEGNAGI B,ICKOWICZ D,et al.Regulation of sperm motility by PIP2(4,5) and actin polymerization[J].Developmental Biology,2013,381(1):62-72. [46] DUMA-PAUTA J M,JUÁREZ-LÓPEZ N O,GUTIÉRREZ-PÉREZ O,et al.Cryopreservation,in addition to protein tyrosine phosphorylation,alters the distribution of phosphatidyl inositol bisphosphate and the localization of cytoskeletal and signaling proteins (gelsolin,tyrosine kinase c-SRC and phospholipase C-ζ) in the perinuclear theca of boar sperm[J].Cryobiology,2023,113:104589. [47] FANG Y,BLAIR H,ZHONG R,et al.Optimizing the freezing rate for ovine semen cryopreservation:Phospholipid profiles and functions of the plasma membrane and quality and fertilization of spermatozoa[J].Small Ruminant Research,2016,139:46-51. [48] CHEN X,ZHU H,HU C,et al.Identification of differentially expressed proteins in fresh and frozen-thawed boar spermatozoa by iTRAQ-coupled 2D LC-MS/MS[J].Reproduction,2014,147(3):321-330. [49] ALI M A,QIN Z,DOU S,et al.Cryopreservation induces acetylation of metabolism-related proteins in boar sperm[J].International Journal of Molecular Sciences,2023,24(13):10983. [50] SMOLKOVÁ K,ŠPA AČ KOVÁ J,GOTVALDOVÁ K,et al.SIRT3 and GCN5L regulation of NADP+- and NADPH-driven reactions of mitochondrial isocitrate dehydrogenase IDH2[J].Scientific Reports,2020,10(1):8677. [51] PEREZ-PATIÑO C,BARRANCO I,LI J,et al.Cryopreservation differentially alters the proteome of epididymal and ejaculated pig spermatozoa[J].International Journal of Molecular Sciences,2019,20(7):1791. [52] KIM Y M,PARK S W,LEE M J,et al.Profiling of differentially expressed proteins between fresh and frozen-thawed Duroc boar semen using ProteinChip CM10[J].Journal of Animal Science and Technology,2023,65(2):401-411. [53] MARTÍNEZ-FRESNEDA L,SYLVESTER M,SHAKERI F,et al.Differential proteome between ejaculate and epididymal sperm represents a key factor for sperm freezability in wild small ruminants[J].Cryobiology,2021,99:64-77. [54] MACIEL JR V L,TAMASHIRO L K,BERTOLLA R P.Post-translational modifications of seminal proteins and their importance in male fertility potential[J].Expert Review of Proteomics,2019,16(11-12):941-950. [55] CHEN G,REN L,CHANG Z,et al.Lysine acetylation participates in boar spermatozoa motility and acrosome status regulation under different glucose conditions[J].Theriogenology,2021,159:140-146. [56] BOGLE O A,KUMAR K,ATTARDO-PARRINELLO C,et al.Identification of protein changes in human spermatozoa throughout the cryopreservation process[J].Andrology,2017,5(1):10-22. [57] LESSARD C,PARENT S,LECLERC P,et al.Cryopreservation alters the levels of the bull sperm surface protein P25b[J].Journal of Andrology, 2000,21(5):700-707. [58] WOJTUSIK J,WANG Y,PUKAZHENTHI B S.Pretreatment with cholesterol-loaded cyclodextrins prevents loss of motility associated proteins during cryopreservation of Addra gazelle (Nanger dama ruficollis) spermatozoa[J].Cryobiology, 2018,81:74-80. [59] PERIS-FRAU P,MARTÍN-MAESTRO A,INIESTA-CUERDA M,et al.Freezing-thawing procedures remodel the proteome of ram sperm before and after in vitro capacitation[J].International Journal of Molecular Sciences, 2019,20(18):4596. [60] PINI T,RICKARD J P,LEAHY T,et al.Cryopreservation and egg yolk medium alter the proteome of ram spermatozoa[J].Journal of Proteomics, 2018,181:73-82. [61] HE Y,WANG K,ZHAO X,et al.Differential proteome association study of freeze-thaw damage in ram sperm[J].Cryobiology, 2016,72(1):60-68. [62] WESTFALEWICZ B,DIETRICH M A,CIERESZKO A.Impact of cryopreservation on bull (Bos taurus) semen proteome[J].Journal of Animal Science, 2015,93(11):5240-5253. [63] VARGHESE T,DIVYASHREE B C,ROY S C,et al.Loss of heat shock protein 70 from apical region of buffalo (Bubalus bubalis) sperm head after freezing and thawing[J].Theriogenology, 2016,85(5):828-834. [64] ZHANG Y,DAI D,CHANG Y,et al.Cryopreservation of boar sperm induces differential microRNAs expression[J].Cryobiology,2017,76:24-33. [65] RAN M,ZHOU Y,LIANG K,et al.Comparative analysis of microRNA and mRNA profiles of sperm with different freeze tolerance capacities in boar (Sus scrofa) and giant panda (Ailuropoda melanoleuca)[J].Biomolecules,2019,9(9):432. [66] WANG M,TODOROV P,WANG W,et al.Cryoprotectants-free vitrification and conventional freezing of human spermatozoa:A comparative transcript profiling[J].International Journal of Molecular Sciences,2022,23(6):3047. [67] KADIVAR A,ESFANDABADI N S,NAZHVANI E D,et al.Effects of cryopreservation on stallion sperm protamine messenger RNAs[J].Reproduction in Domestic Animals,2020,55(3):274-282. [68] DAI D,QAZI I H,RAN M,et al.Exploration of miRNA and mRNA profiles in fresh and frozen-thawed boar sperm by transcriptome and small RNA sequencing[J].International Journal of Molecular Sciences, 2019,20(4):802. [69] KHALIL W A,EL-HARAIRY M A,ZEIDAN A E B,et al.Evaluation of bull spermatozoa during and after cryopreservation:structural and ultrastructural insights[J].International Journal of Veterinary Science and Medicine,2019,6:S49-S56. [70] ROCA J,HERNÁNDEZ M,CARVAJAL G,et al.Factors influencing boar sperm cryosurvival[J].Journal of Animal Science,2006,84(10):2692-2699. [71] GARCÍA W,TABAREZ A,PALOMO M J.Effect of the type of egg yolk,removal of seminal plasma and donor age on ram sperm cryopreservation[J].Animal Reproduction,2017,14(4):1124-1132. [72] CATALÁN J,LLAVANERA M,BONILLA-CORREAL S,et al.Irradiating frozen-thawed stallion sperm with redlight increases their resilience to withstand post-thaw incubation at 38℃[J].Theriogenology,2020,157:85-95. [73] MARTINEZ-ALBORCIA M J,MORRELL J M,PARRILLA I,et al.Improvement of boar sperm cryosurvival by using single-layer colloid centrifugation prior freezing[J].Theriogenology,2012,78(5):1117-1125. [74] SALMON V M,CASTONGUAY F,DEMERS-CARON V,et al.Cholesterol-loaded cyclodextrin improves ram sperm cryoresistance in skim milkextender[J].Animal Reproduction Science,2017,177:1-11. [75] FERRER M S,CANISSO I F,ELLERBROCK R E,et al.Optimization of cryopreservation protocols for cooled-transported stallion semen[J].Animal Reproduction Science,2020,221:106581. [76] PEZO F,ZAMBRANO F,URIBE P,et al.Oxidative and nitrosative stress in frozen-thawed pig spermatozoa.Ⅰ:Protective effect of melatonin and butylhydroxytoluene on sperm function[J].Research in Veterinary Science,2021,136:143-150. [77] DELGADO-BERMÚDEZ A,LLAVANERA M,FERNÁNDEZ-BASTIT L,et al.Aquaglyceroporins but not orthodox aquaporins are involved in the cryotolerance of pig spermatozoa[J].Journal of Animal Science and Biotechnology,2019,10:77. [78] WATERHOUS K E,HOFMO P O,TVERDAL A,et al.Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm[J].Reproduction,2006,131(5):887-894. [79] ARGOV-ARGAMAN N,MAHGREFTHE K,ZERON Y,et al.Season-induced variation in lipid composition is associated with semen quality in Holstein bulls[J].Reproduction, 2013,145(5):479-489. [80] WESTFALEWICZ B,DIETRICH M,SŁOWI AN'G SKA M,et al.Seasonal changes in the proteome of cryopreserved bull semen supernatant[J].Theriogenology, 2019,126:295-302. [81] MARTÍNEZ-FRESNEDA L,O’BRIEN E,VELÁZQUEZ R,et al.Seasonal variation in sperm freezability associated with changes in testicular germinal epithelium in domestic (Ovis aries) and wild (Ovis musimon) sheep[J].Reproduction Fertility and Development, 2019,31(10):1545-1557. [82] LEAHY T,MARTI J I,EVANS G,et al.Seasonal variation in the protective effect of seminal plasma on frozen-thawed ram spermatozoa[J].Animal Reproduction Science, 2010,119(1-2):147-153. [83] AD URA AČ KA M,BENKO F,TVRDÁ E.Molecular markers:A new paradigm in the prediction of sperm freezability[J].International Journal of Molecular Sciences,2023,24(4):3379. [84] PARDEDE B P,KUSUMAWATI A,PANGESTU M,et al.Bovine sperm HSP-70 molecules:A potential cryo-tolerance marker associated with semen quality and fertility rate[J].Frontiers in Veterinary Science,2023,10:1167594. [85] ZHANG X G,HU S,HAN C,et al.Association of heat shock protein 90 with motility of post-thawed sperm in bulls[J].Cryobiology,2015,70(2):164-169. [86] HOLT W V,VALLE D I,FAZELI A.Heat shock protein A8 stabilizes the bull sperm plasma membrane during cryopreservation:Effects of breed,protein concentration,and mode of use[J].Theriogenology,2015,84(5):693-701. [87] VALENCIA J,GOMEZ G,LOPEZ W,et al.Relationship between HSP90a,NPC2 and LPGDS proteins to boar semen freezability[J].Journal of Animal Science and Biotechnology,2017,8:21. [88] RYU D,SONG W,PANG W,et al.Freezability biomarkers in bull epididymal spermatozoa[J].Scientific Reports,2019,9(1):12797. [89] LLAVANERA M,DELGADO-BERMÚDEZ A,FERNANDEZ-FUERTES B,et al.GSTM3,but not IZUMO1,is a cryotolerance marker of boar sperm[J].Journal of Animal Science and Biotechnology,2019,10:61. [90] DELGADO-BERMÚDEZ A,MATEO-OTERO Y,LLAVANERA M,et al.HVCN1 but not potassium channels are related to mammalian sperm cryotolerance[J].International Journal of Molecular Sciences,2021,22(4):1646. [91] BLOMMAERT D,SERGEANT N,DELEHEDDE M,et al.Expression,localization,and concentration of A-kinase anchor protein 4(AKAP4) and its precursor (proAKAP4) in equine semen:promising marker correlated to the total and progressive motility in thawed spermatozoa[J].Theriogenology,2019,131:52-60. [92] PEREZ-PATIÑO C,LI J,BARRANCO I,et al.The proteome of frozen-thawed pig spermatozoa is dependent on the ejaculate fraction source[J].Scientific Reports,2019,9(1):705. [93] PRIETO-MARTÍNEZ N,MORATÓ R,MUIÑO R,er al.Aquaglyceroporins 3 and 7 in bull spermatozoa:Identification,localisation and their relationship with sperm cryotolerance[J].Reproduction,Fertility,and Development,2017,29(6):1249-1259. [94] PRIETO-MARTÍNEZ N,VILAGRAN I,MORATÓ R,et al.Relationship of aquaporins 3(AQP3),7(AQP7),and 11(AQP11) with boar sperm resilience to withstand freeze-thawing procedures[J].Andrology,2017,5(6):1153-1164. [95] MORATÓ R,PRIETO-MARTÍNEZ N,MUIÑO R,et al.Aquaporin 11 is related to cryotolerance and fertilising ability of frozen-thawed bull spermatozoa[J].Reproduction,Fertility,and Development, 2018,30(8):1099-1108. [96] SONG W H,RYU D Y,PANG W K,et al.NT5C1B and FH are closely associated with cryoprotectant tolerance in spermatozoa[J].Andrology,2019,8(1):221-230. [97] REGO J P A,MARTINS J M,WOLF C A,et al.Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls[J].Journal of Animal Science, 2016,94(12):5308-5320. [98] RICKARD J P,LEAHY T,SOLEILHAVOUP C,et al.The identification of proteomic markers of sperm freezing resilience in ram seminal plasma[J].Journal of Proteomic, 2015,126:303-311. |
[1] | 王茹, 王家豪, 欧靖渝, 汤文慧, 程箫, 王强军, 陈家宏, 张子军, 任春环. 抗氧化剂对反刍动物精液冷冻效果的影响[J]. 中国畜牧兽医, 2025, 52(7): 3242-3255. |
[2] | 于向宇, 张桂杰, 陈晓东. 植物多糖生物活性及其在反刍动物生产中应用的研究进展[J]. 中国畜牧兽医, 2025, 52(6): 2626-2636. |
[3] | 陈丹丹, 齐雅天, 李俊杰. 卵母细胞玻璃化冷冻保存中凋亡的机制及缓解策略[J]. 中国畜牧兽医, 2025, 52(6): 2729-2735. |
[4] | 唐煌尧, 张伟, 魏浩, 王斐英, 廖小翠, 张珍誉. 大豆异黄酮的生物学功能及其在动物生产中的应用研究进展[J]. 中国畜牧兽医, 2025, 52(5): 2157-2165. |
[5] | 赵芳琳, 刘萌, 唐泽宇, 赵健豪, 李璐, 贾立军. 双氢青蒿素对新孢子虫感染雄性小鼠精子质量和生精功能基因的影响[J]. 中国畜牧兽医, 2025, 52(4): 1796-1806. |
[6] | 陈秀英, 李爱军, 李明阳, 张彩华, 崔亚楠, 周丽娜, 谷守国, 周彦成. 动物源性食品中兽药残留前处理及检测技术研究进展[J]. 中国畜牧兽医, 2025, 52(4): 1914-1923. |
[7] | 李超程, 刘亚星, 李健, 李云蕾, 贾斌. Zfy基因在精子尾部发育过程中的作用机制研究[J]. 中国畜牧兽医, 2025, 52(3): 1222-1230. |
[8] | 刘丹丹, 李金荣, 高函雅, 李姝怡, 彭菲, 徐李依娜, 王馨, 郝宝山, 买占海, 阿得力江·吾斯曼, 赛福丁·阿不拉, 刘建华, 张伟. 马/驴源马链球菌马亚种新疆分离株小鼠感染模型的建立及验证[J]. 中国畜牧兽医, 2025, 52(3): 1342-1351. |
[9] | 王泳, 马驰, 王超, 赵启南, 孙智鹏, 田丰, 王利, 金海, 李长青. miRNA和lncRNA调控反刍动物卵泡发育的分子机制研究进展[J]. 中国畜牧兽医, 2025, 52(2): 771-780. |
[10] | 陆瑞, 盛辉, 郭妍岩, 张羽欣, 姚大为, 郭晓飞, 阮维斌, 张效生. 脂多糖免疫应激研究进展[J]. 中国畜牧兽医, 2025, 52(2): 946-958. |
[11] | 刘辉, 季海峰, 王四新, 陈美霞, 张董燕. 1株猪源动物联合乳杆菌S7全基因组测序及生物信息学分析[J]. 中国畜牧兽医, 2025, 52(1): 25-38. |
[12] | 刘海霞, 王健, 平措班旦, 朱爱文, 德庆卓嘎, 王军, 格桑加措. 彭波半细毛羊冷冻保存睾丸组织支持细胞分离、纯化及鉴定[J]. 中国畜牧兽医, 2025, 52(1): 249-257. |
[13] | 赵艺嘉, 李栋, 胡建宏, 杨公社, 于太永. 猪精液保存技术研究进展[J]. 中国畜牧兽医, 2024, 51(9): 3909-3920. |
[14] | 刘伯承, 刘微, 柳颖, 何晓娜, 陈一峰, 张光友, 张明军, 燕海峰. 鸡精液甘油简易冷冻保存技术改进与优化效果评价[J]. 中国畜牧兽医, 2024, 51(8): 3461-3470. |
[15] | 王美桀, 刘兴旺, 白曼. lncRNA在哺乳动物雄性生殖中作用的研究进展[J]. 中国畜牧兽医, 2024, 51(7): 2963-2972. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||