China Animal Husbandry & Veterinary Medicine ›› 2025, Vol. 52 ›› Issue (5): 2442-2448.doi: 10.16431/j.cnki.1671-7236.2025.05.046
• Clinical Veterinary Medicine • Previous Articles Next Articles
SUN Jintao1, GU Xinshu1,2, WANG Jinquan1, WANG Xiumin1, TAO Hui1, WANG Zhenlong1, HAN Bing1
Received:
2024-07-11
Online:
2025-05-05
Published:
2025-04-27
CLC Number:
SUN Jintao, GU Xinshu, WANG Jinquan, WANG Xiumin, TAO Hui, WANG Zhenlong, HAN Bing. Mechanisms and Recent Advances of Lactic Acid Bacteria in Treating Intestinal Inflammation in Companion Animals[J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2442-2448.
[1] BRUNER L P,WHITE A M,PROKSELL S.Inflammatory bowel disease[J]. Primary Care,2023,50(3):411-427. [2] JERGENS A E.Feline idiopathic inflammatory bowel disease:What we know and what remains to be unraveled[J]. Journal of Feline Medicine and Surgery,2012,14(7):445-458. [3] ZHANG X F,GUAN X X,TANG Y J,et al.Clinical effects and gut microbiota changes of using probiotics,prebiotics or synbiotics in inflammatory bowel disease:A systematic review and Meta-analysis[J].European Journal of Clinical Nutrition,2021,60(5):2855-2875. [4] DAY M J,BILZER T,MANSELL J,et al.Histopathological standards for the diagnosis of gastrointestinal inflammation in endoscopic biopsy samples from the dog and cat:A report from the world small animal veterinary association gastrointestinal standardization group[J].Journal of Comparative Pathology,2008,138 Suppl 1:S1-S43. [5] KOPPER J J,IENNARELLA-SERVANTEZ C,JERGENS A E,et al.Harnessing the biology of canine intestinal organoids to heighten understanding of inflammatory bowel disease pathogenesis and accelerate drug discovery:A one health approach[J].Frontiers in Toxicology,2021,3:773953. [6] DI SABATINO A,LENTI M V,GIUFFRIDA P,et al.New insights into immune mechanisms underlying autoimmune diseases of the gastrointestinal tract[J].Autoimmunity Reviews,2015,14(12):1161-1169. [7] KHOR B,GARDET A,XAVIER R J.Genetics and pathogenesis of inflammatory bowel disease[J].Nature,2011,474(7351):307-317. [8] KUCHARZIK T,WALSH S V,CHEN J,et al.Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins[J].American Journal of Pathology,2001,159(6):2001-2009. [9] ZEN K,LIU Y,MCCALL I C,et al.Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and Adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils[J]. Molecular Biology of the Cell,2005,16(6):2694-2703. [10] OPPENHEIM J J,ZACHARIAE C O,MUKAIDA N,et al.Properties of the novel proinflammatory supergene "intercrine" cytokine family[J].Annual Review of Immunology,1991,9:617-648. [11] BEIL W J,WELLER P F,PEPPERCORN M A,et al.Ultrastructural immunogold localization of subcellular sites of TNF-alpha in colonic Crohn’s disease[J].Journal of Leukocyte Biology,1995,58(3):284-298. [12] BRAZIL J C,LOUIS N A,PARKOS C A.The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease[J].Inflammatory Bowel Diseases,2013,19(7):1556-1565. [13] YANG D,CHEN Q,CHERTOV O,et al.Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells[J].Journal of Leukocyte Biology,2000,68(1):9-14. [14] BRAZIL J C,LEE W Y,KOLEGRAFF K N,et al.Neutrophil migration across intestinal epithelium:Evidence for a role of CD44 in regulating detachment of migrating cells from the luminal surface[J].Journal of Immunology,2010,185(11):7026-7036. [15] GARCÍA-SANCHO M,RODRÍGUEZ-FRANCO F,SAINZ A,et al.Evaluation of clinical,macroscopic,and histopathologic response to treatment in nonhypoproteinemic dogs with lymphocytic-plasmacytic enteritis[J].Journal of Veterinary Internal Medicine,2007,21(1):11-17. [16] AGULLA B,VILLAESCUSA A,SAINZ Á,et al.Peripheral and intestinal T lymphocyte subsets in dogs with chronic inflammatory enteropathy[J]. Journal of Veterinary Internal Medicine,2024,38(3):1437-1448. [17] MENG Y,WANG J,WANG Z,et al.Lactobacillus plantarum KLDS1.0318 ameliorates impaired intestinal immunity and metabolic disorders in cyclophosphamide-treated mice[J].Frontiers in Microbiology,2019,10:731. [18] SONG Y,SUN M,MA F,et al.Lactiplantibacillus plantarum DLPT4 protects against cyclophosphamide-induced immunosuppression in mice by regulating immune response and intestinal flora[J]. Probiotics and Antimicrobial Proteins,2024,16(2):321-333. [19] YAN F,LI N,SHI J,et al. Lactobacillus acidophilus alleviates type 2 diabetes by regulating hepatic glucose,lipid metabolism and gut microbiota in mice[J].Food & Function,2019,10(9):5804-5815. [20] SATISH KUMAR C S,KONDAL REDDY K,BOOBALAN G,et al.Protective effect of Lactobacillus plantarum,21,a probiotic on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats[J].International Immunopharmacology,2015,25:504-510. [21] ZHANG J,XIAO Y,WANG H,et al.Lactic acid bacteria-derived exopolysaccharide:Formation,immunomodulatory ability,health effects,and structure-function relationship[J]. Microbiological Research,2023,274:127432. [22] MARKOWIAK-KOPEĆ P, ŚLIŻEWSKA K.The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients,2020,12(4):1107. [23] CHERBUT C.Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract[J].Proceedingsof the Nutrition Society,2003,62(1):95-99. [24] LI M,VAN ESCH B C A M,WAGENAAR G T M,et al.Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells[J]. European Journal of Pharmacology,2018,831:52-59. [25] ELCE A,AMATO F,ZARRILLI F,et al.Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells[J]. Beneficial Microbes,2017,8(5):841-847. [26] KUCZY AN'G SKA B,WASILEWSKA A,BICZYSKO M,et al.Krótkołańcuchowe kwasy tłuszczowe-mechanizm działania,potencjalne zastosowanie kliniczne oraz zalecenia dietetyczne[J]. Instytut Mikrobiomiki,2011,80:299-304. [27] MOENS F,VAN DEN ABBEELE P,BASIT A W,et al.A four-strain probiotic exerts positive immunomodulatory effects by enhancing colonic butyrate production in vitro[J].International Journal of Pharmaceutics,2019,555:1-10. [28] WANG L,ZHANG J,GUO Z,et al.Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota,SIgA,SCFAs,and TBAs of adults of different ages[J].Nutrition,2014,30(7-8):776-783. [29] LAURINDO L F,SANTOS A R O D,CARVALHO A C A,et al.Phytochemicals and regulation of NF-κB in inflammatory bowel diseases:An overview of in vitro and in vivo effects[J].Metabolites,2023,13(1):96. [30] ATREYA I,ATREYA R,NEURATH M F.NF-kappaB in inflammatory bowel disease[J].Journal of Internal Medicine,2008,263(6):591-596. [31] DONG K,ZHANG Y,JI H R,et al.Dexamethasone-loaded lipid calcium phosphate nanoparticles treat experimental colitis by regulating macrophage polarization in inflammatory sites[J].International Journal of Nanomedicine,2024,19:993-1016. [32] KANG Y,KANG X,YANG H,et al.Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability[J].Pharmacological Research,2022,175:106020. [33] KIM A Y,PARK Y J,PAN X,et al.Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance[J]. Nature Communications,2015,6:7585. [34] KIM K J,KYUNG S,JIN H,et al.Lactic acid bacteria isolated from human breast milk improve colitis induced by 2,4,6-trinitrobenzene sulfonic acid by inhibiting NF-κB signaling in mice[J].Journal of Microbiology and Biotechnology,2023,33(8):1057-1065. [35] JANG S E,MIN S W.Lactobacillus sakei S1 improves colitis induced by 2,4,6-trinitrobenzene sulfonic acid by the inhibition of NF-κB signaling in mice[J]. Journal of Microbiology and Biotechnology,2020,30(1):71-78. [36] JANG S E,HAN M J,KIM S Y,et al. Lactobacillus plantarum CLP-0611 ameliorates colitis in mice by polarizing M1 to M2-like macrophages[J]. International Immunopharmacology,2014,21(1):186-192. [37] IKUTA T,KUROSUMI M,YATSUOKA T,et al.Tissue distribution of aryl hydrocarbon receptor in the intestine:Implication of putative roles in tumor suppression[J]. Experimental Cell Research,2016,343(2):126-134. [38] VÁZQUEZ-GÓMEZ G,PETRÁŠ J,DVOŘ ÁK Z,et al.Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis[J].Biochemical Pharmacology,2023,216:115797. [39] TAN Y Q,WANG Y N,FENG H Y,et al.Host/microbiota interactions-derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling[J]. Free Radical Biology and Medicine,2022,184:30-41. [40] NOHARA K,PAN X,TSUKUMO S,et al.Constitutively active aryl hydrocarbon receptor expressed specifically in T-lineage cells causes thymus involution and suppresses the immunization-induced increase in splenocytes[J].The Journal of Immunology,2005,174(5):2770-2777. [41] SAKAMOTO R,TAKADA A,YAMAKADO S,et al.Release from persistent T cell receptor engagement and blockade of aryl hydrocarbon receptor activity enhance IL-6-dependent mouse follicular helper T-like cell differentiation in vitro[J].PLoS One,2023,18(6):e0287746. [42] BENDER M J,MCPHERSON A C,PHELPS C M,et al.Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment[J].Cell,2023,186(9):1846-1862. [43] MONTGOMERY T L,ECKSTROM K,LILE K H,et al.Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity[J].Microbiome,2022,10(1):198. [44] LAMAS B,NATIVIDAD J M,SOKOL H.Aryl hydrocarbon receptor and intestinal immunity[J].Mucosal Immunology,2018,11(4):1024-1038. [45] MONTELEONE I,RIZZO A,SARRA M,et al.Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract[J].Gastroenterology,2011,141(1):237-248. [46] ZELANTE T,IANNITTI RG,CUNHA C,et al.Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J].Immunity,2013,39(2):372-385. [47] GAO J,XU K,LIU H,et al.Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism[J].Frontiers in Cellular and Infection Microbiology,2018,8:13. [48] SEO S K,KWON B.Immune regulation through tryptophan metabolism[J].Experimental and Molecular Medicine,2023,55(7):1371-1379. [49] SUN M,MA N,HE T,et al.Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR)[J]. Critical Reviews in Food Science and Nutrition,2020,60(10):1760-1768. [50] ÖZÇAM M,TOCMO R,OH J H,et al.Gut symbionts Lactobacillus reuteri r2lc and 2010 encode a polyketide synthase cluster that activates the mammalian aryl hydrocarbon receptor[J].Applied and Environmental Microbiology,2019,85(10):e01661-18. [51] DONG F,HAO F,MURRAY I A,et al.Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity[J]. Gut Microbes,2020,12(1):1-24. [52] JANG Y J,KIM W K,HAN D H,et al.Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota[J]. Gut Microbes,2019,10(6):696-711. [53] RODRÍGUEZ-NOGALES A,ALGIERI F,GARRIDO-MESA J,et al.Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice:Impact on microRNAs expression and gut microbiota composition[J].Journal of Nutritional Biochemistry,2018,61:129-139. [54] LI A,LIU A,WANG J,et al.The prophylaxis functions of Lactobacillus fermentum GLF-217 and Lactobacillus plantarum FLP-215 on ulcerative colitis via modulating gut microbiota of mice[J].Journal of the Science of Food and Agriculture,2024,104(10):5816-5825. [55] ZHANG W Q,QUAN K Y,FENG C J,et al.The Lactobacillus gasseri g098 strain mitigates symptoms of DSS-induced inflammatory bowel disease in mice[J].Nutrients,2022,14(18):3745. [56] LIU Y,LIU G,FANG J.Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis[J].Journal of Nutritional Biochemistry,2024,124:109505. [57] ZHAO H,ZHAO C,DONG Y,et al.Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease[J]. Toxicology Letters,2015,234(3):194-200. [58] KALIYAMOORTHY V,JACOP J P,THIRUGNANASAMBANTHAM K,et al.The synergic impact of lignin and Lactobacillus plantarum on DSS-induced colitis model via regulating CD44 and miR199a alliance[J]. World Journal of Microbiology and Biotechnology,2022,38(12):233. |
[1] | WANG Haojie, HUA Tian, CHEN Shihao, BI Yulin, JIANG Yong, WANG Zhixiu, CHEN Guohong, BAI Hao, CHANG Guobin. Research Progress on Effects of Intestinal Flora on Immune System of Livestock and Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3398-3408. |
[2] | LIU Jijun, WANG Fengbo, WEI Feng, JIN Yaping, ZHANG Haisen, CHEN Huatao. Research Progress on the Role of Circadian Clock in Regulating Glucose and Lipid Metabolism Homeostasis of Ketosis in Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3449-3458. |
[3] | CHEN Haiyan, ZHANG Jingzheng, XU Chenxin, LIU Yuanfen, ZHOU Yongmei, HAN Jin. Exploration of the Pharmacodynamic Substances of Anti-inflammatory and Mechanism of Clematidis Radix Decoction Using UPLC-Q-TOF-MS Combined with Network Pharmacology [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2851-2864. |
[4] | HAN Xiaozhuo, WANG Yanping, CUI Zhicheng, YU Le, HAO Jiahui, WANG Yingyu, MO Fei, ZHANG Luyao, CUI Cancan, NIU Shengli. Research Progress of NLRP3 Inflammasome in Veterinary Field [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2925-2934. |
[5] | ZHAO Haoran, MA Xin, WANG Jia, LIU Bo, ZHANG Yizhi, WANG Xiuli, YAO Wensheng, WEI Jin, LIU Yan. Research Progress on Mycoplasma synoviae Infection in Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2946-2954. |
[6] | HE Siqi, CHEN Qian, ZHANG Hechun, CHEN Hongyan, MA Yuehui, ZHOU Shenghua, ZHAO Qianjun. Research Progress on the Biological Role and Regulatory Mechanism of m6A Methylation in Skeletal Muscle Development [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1511-1521. |
[7] | LUO Tongwang, JIN Yan, SHENG Yifan, WANG Shujie, SONG Houhui, SHAO Chunyan. Research Progress on the Biological Functions of Isoorientin [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1579-1589. |
[8] | LI Yajuan, SONG Kelin, LI Jie, ZHANG Yali, LIANG Yuhao, LI Yao, GUN Shuangbao, GAO Xiaoli. Research Progress on the Effects of Cold Stress on Animal Energy Metabolism and Its Molecular Regulation [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1616-1626. |
[9] | LIU Xiaotong, GE Bingjie, QIU Qian, LIU Xinman, YU Minghong, ZHANG Xuemei. Application of Bioinformatics in Toxicity Mechanism of Aflatoxin B1 [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1639-1650. |
[10] | ZHU Bin, ZHOU Xingyou, WUJunquan, CHEN Huiying, ZHUJianfeng, QIJiaojiao, HU Wenfeng, YANG Meiyan. Phage Therapy in Mycoplasma Disease Management:Advances in Prevention and Treatment Strategies for Livestock and Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1763-1775. |
[11] | LI Haiyang, GAO Yongyu, LI Hanwen, FENG Hongsheng, XIAN Yuhan, YANG Siyu, SANG Chenjun, CAO Yudie, TANG Yue, LI Zibin, GAO Fengshan. Research Progress on the Mechanism of Foot-and-mouth Disease Virus Proliferation and Immune Evasion in Host Cells [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1250-1262. |
[12] | MAO Fuchao, ZHAI Chongkai, TIAN Wenjing, WANG Conghui, SONG Minjie, WANG Yingxian, ZHANG Hewei. An Updated Review of Porcine Deltacoronavirus in Terms of Infection and Anti-infection Research [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1281-1291. |
[13] | LI Huanhuan, YU Chenmin, TIAN Xiaorong, LI Rui, LI Zongyun, ZHANG Yanyan, ZHAO Di, WANG Lei, HOU Yongqing, WU Tao. Protective Effect of Catechu Extract on the Colon of Young Piglets Infected with Porcine Epidemic Diarrhea Virus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1360-1369. |
[14] | ZHANG Yao, ZHU Liyang, YANG Ying, HOU Jingyan, HAN Taoze, WANG Kailong, XU Yaxi, SHENG Xihui. Research Progress on Inosine Monophosphate in Livestock and Poultry Muscle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 686-697. |
[15] | WANG Yong, MA Chi, WANG Chao, ZHAO Qinan, SUN Zhipeng, TIAN Feng, WANG Li, JIN Hai, LI Changqing. Research Progress on Molecular Mechanism of miRNA and lncRNA Regulating Follicular Development in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 771-780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||