中国畜牧兽医 ›› 2026, Vol. 53 ›› Issue (1): 94-106.doi: 10.16431/j.cnki.1671-7236.2026.01.009
姬聪浩1(
), 李姝璇1,2(
), 黄钰1,2, 胡存海3, 王孜龙1, 冯书营1,2(
)
收稿日期:2025-03-07
出版日期:2026-01-05
发布日期:2025-12-26
通讯作者:
冯书营
E-mail:j18300698502@163.com;lishuxuan37@163.com;fsy@hactcm.edu.cn
作者简介:姬聪浩,E-mail: j18300698502@163.com基金资助:
JI Conghao1(
), LI Shuxuan1,2(
), HUANG Yu1,2, HU Cunhai3, WANG Zilong1, FENG Shuying1,2(
)
Received:2025-03-07
Online:2026-01-05
Published:2025-12-26
Contact:
FENG Shuying
E-mail:j18300698502@163.com;lishuxuan37@163.com;fsy@hactcm.edu.cn
摘要:
猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)作为生猪养殖业的高危病原体之一,给全球生猪养殖业造成了重大威胁。由于病毒的高变异性和免疫逃逸特性,对传统疫苗及化学防控药物构成了严峻的挑战。基于中药复方多靶点的协同干预作用,中药已成为当前抗病毒研究领域的热点方向之一。笔者针对中药防控猪流行性腹泻(PED)的国内外研究进展进行了全面综述,对最新中药组方的防控效果和作用机制进行了系统性归纳。同时,结合中药现代化技术,涉及人工智能、网络药理学、中药纳米化、中药益生菌发酵等技术进行中药增效的多途径、多策略的梳理汇总,并展望了中药防治PED的发展方向和应用前景,为PED的防控提供更安全、更有效的中药复合制剂,也为其他动物病毒性疾病的防控提供了参考。
中图分类号:
姬聪浩, 李姝璇, 黄钰, 胡存海, 王孜龙, 冯书营. 中药防治猪流行性腹泻及增效作用机制研究进展[J]. 中国畜牧兽医, 2026, 53(1): 94-106.
JI Conghao, LI Shuxuan, HUANG Yu, HU Cunhai, WANG Zilong, FENG Shuying. Research Progress on the Use of Traditional Chinese Medicine in the Prevention and Treatment of Porcine Epidemic Diarrhea and Its Synergistic Mechanisms[J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(1): 94-106.
表1
防治PED中药复方的组成成分及其作用机制"
序号 No. | 中药复方 Chinese medicine compound | 复方组成 Compound composition | 毒株 Strains | 机制 Mechanism | 效果 Efficiency | 参考文献References |
|---|---|---|---|---|---|---|
| 1 | 复方穿心莲 | 穿心莲、无花果、大青叶、马齿苋 | CV777 | 触发Ⅰ型干扰素信号级联反应,抑制β-干扰素信号通路,蛋白质半衰期延长 | 增强宿主抗病毒能力;减少病毒复制;减轻炎症反应;促进组织修复 | 刘衍芬等[ |
| 2 | 白头翁散 | 黄柏、黄连、白头翁、秦皮 | PEDV HN2021 | 上调Ⅰ型干扰素信号通路,增强宿主抗病毒能力;减少促炎因子肿瘤坏死因子-α(TNF-α)、IL-6的产生;维持紧密连接蛋白1(ZO-1)表达,增强肠道屏障功能 | 减轻临床症状;减少病毒载量;改善组织病理学变化 | 常伟辰等[ |
| 3 | 复方蒲公英 | 蒲公英、泽泻、葛根、甘草、山楂 | PEDV JLX 2022 | 上调Ⅰ型干扰素信号通路,增强宿主抗病毒能力;减少促炎因子的产生;维持ZO-1表达 | 减少腹泻频率,体重恢复;降低病毒复制;减轻肠道损伤 | 甘晓凤[ |
| 4 | 自拟方 | 白头翁、黄芩、秦皮、党参、苍术、甘草、当归、肉桂、厚朴、诃子、山楂 | 生物转化与代谢增强;提高有效成分的生物利用度;改善药物的安全性 | 增强抗炎和抗氧化能力;改善肠道健康;提高临床疗效 | 杨云乔等[ | |
| 5 | 自拟方 | 鱼腥草、黄连、蒲公英、板蓝根、黄芪、太子参 | 上调β-干扰素表达,增强宿主抗病毒能力;抑制NF-κB通路,减少促炎因子的产生;改善肠道屏障功能 | 减少腹泻频率,加快体重恢复;降低病毒载量;减轻肠道黏膜损伤 | 王亚欣等[ | |
| 6 | 五苓散 | 茯苓、泽泻、猪苓、肉桂、白术(炒) | 减少腹泻和脱水症状;抑制NF-κB通路,减少促炎因子的产生;维持紧密连接蛋白表达,增强肠道屏障功能 | 减少腹泻频率,加快体重恢复;降低病毒载量;减轻肠道黏膜损伤 | 段永团等[ | |
| 7 | 自拟方 | 穿心莲、无花果、大青叶、马齿苋、黄芪 | CV777 | 抑制病毒吸附与入侵;上调Ⅰ型干扰素信号通路;抑制过度炎症反应;改善肠道屏障功能 | 降低病毒复制;减少腹泻频率,加快体重恢复;减轻肠道损伤 | 刘衍芬等[ |
| 8 | 自拟方 | 白术、党参、木香、茯苓、代赭石、煨诃子 | 抑制病毒吸附与入侵;通过诱导产生多种抗病毒蛋白;减少促炎因子的产生;减少肠道通透性 | 仔猪腹泻频率显著降低;减少病毒载量;肠道黏膜损伤程度较轻,恢复速度更快 | 杨久春等[ |
| [1] | SUN D, WANG X, WEI S, et al. Epidemiology and vaccine of Porcine epidemic diarrhea virus in China: A mini-review[J]. Journal of Veterinary Medical Science, 2016, 78(3): 355-363. |
| [2] | JUNG K, SAIF L J. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis[J]. The Veterinary Journal, 2015, 204(2): 134-143. |
| [3] | PENSAERT M B, DE BOUCK P. A new Coronavirus-like particle associated with diarrhea in swine[J]. Archives of Virology, 1978, 58(3): 243-247. |
| [4] | CHEN J, WANG C, SHI H, et al. Molecular epidemiology of Porcine epidemic diarrhea virus in China[J]. Archives of Virology, 2010, 155(9): 1471-1476. |
| [5] | YU J, ZHANG Y, SONG X, et al. Effect of modified Pulsatilla powder on enterotoxigenic Escherichia coli O101-induced diarrhea in mice[J]. Evidence-Based Complementary and Alternative Medicine, 2017, 2017: 3687486. |
| [6] | 王誉儒, 王亚勤, 李英杰,等. 中医药治疗新冠病毒轻型感染用药规律及疗效分析[J]. 中华中医药学刊, 2024, 42(5): 8-13. |
| WANG Y R, WANG Y Q, LI Y J, et al. Analysis of medication rules and clinical efficacy in traditional Chinese medicine for treatment to mild symptoms with COVID-19[J]. Chinese Archives of Traditional Chinese Medicine, 2024, 42(5): 8-13. (in Chinese) | |
| [7] | 李菲, 李娟, 张振杰,等. 银花青蒿栀子方抗A6型柯萨奇病毒的作用[J]. 病毒学报, 2021, 37(5): 1027-1035. |
| LI F, LI J, ZHANG Z J, et al. Antiviral effect of YQZ against Coxsackievirus A6[J]. Chinese Journal of Virology, 2021, 37(5): 1027-1035. (in Chinese) | |
| [8] | THOMFORD N E, SENTHEBANE D A, ROWE A, et al. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery[J]. International Journal of Molecular Sciences, 2018, 19(6): 1578. |
| [9] | KHWAZA V, OYEDEJI O O, ADERIBIGBE B A. Antiviral activities of oleanolic acid and its analogues[J]. Molecules, 2018, 23(9): 2300. |
| [10] | XU L, ZHONG X L, XI Z C, et al. Medicinal plants and natural compounds against acyclovir-resistant HSV infections[J]. Frontiers in Microbiology, 2022, 13: 1025605. |
| [11] | CHANG K, FAN K, ZHANG H, et al. Fuzhengjiedu San inhibits Porcine reproductive and respiratory syndrome virus by activating the PI3K/AKT pathway[J]. PLoS One, 2024, 19(5): e0283728. |
| [12] | TAN X, CUI J, LIU N, et al. Study on the immune-enhancing and inhabiting Transmissible gastroenteritis virus effects of polysaccharides from Cimicifuga rhizoma [J]. Microbial Pathogenesis, 2024, 192: 106719. |
| [13] | LIN F, ZHANG H, LI L, et al. PEDV: Insights and advances into types, function, structure, and receptor recognition[J]. Viruses, 2022, 14(8): 1477. |
| [14] | ZUÑIGA S, PASCUAL-IGLESIAS A, SANCHEZ C M, et al. Virulence factors in Porcine coronaviruses and vaccine design[J]. Virus Research, 2016, 226: 142-151. |
| [15] | RYU J, KANG G J, KIM O, et al. Transplacental transmission of Porcine epidemic diarrhea virus[J]. Frontiers in Veterinary Science, 2021, 8: 802-816. |
| [16] | XU X, ZHANG H, ZHANG Q, et al. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression[J]. Virology Journal, 2013, 10: 26. |
| [17] | ZHENG L, WANG X, GUO D, et al. Porcine epidemic diarrhea virus E protein suppresses RIG-Ⅰsignaling-mediated interferon-β production[J]. Veterinary Microbiology, 2021, 254: 108994. |
| [18] | WANG R, YU R, CHEN B, et al. Identification of host cell proteins that interact with the M protein of Porcine epidemic diarrhea virus[J]. Veterinary Microbiology, 2020, 246: 108729. |
| [19] | ZHAI X, KONG N, ZHANG Y, et al. N protein of PEDV plays chess game with host proteins by selective autophagy[J]. Autophagy, 2023, 19(8): 2338-2352. |
| [20] | ZHAO Y, FAN B, SONG X, et al. PEDV-spike-protein-expressing mRNA vaccine protects piglets against PEDV challenge[J]. mBio, 2024, 15(2): e0295823. |
| [21] | WANG K, LU W, CHEN J, et al. PEDV ORF3 encodes an ion channel protein and regulates virus production[J]. FEBS Letters, 2012, 586(4): 384-391. |
| [22] | YE S, LI Z, CHEN F, et al. Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV[J]. Virus Genes, 2015, 51(3): 385-392. |
| [23] | FAN B, JIAO D, ZHANG R, et al. Origin and epidemic status of Porcine epidemic diarrhea virus variants in China[J]. Transboundary and Emerging Diseases, 2020, 67(3): 1364-1370. |
| [24] | ZHANG Y, CHEN Y, YUAN W, et al. Evaluation of cross-protection between G1a- and G2a-genotype Porcine epidemic diarrhea viruses in suckling piglets[J]. Animals (Basel), 2020, 10(9): 1674. |
| [25] | PENSAERT M B, MARTELLI P. Porcine epidemic diarrhea: A retrospect from Europe and matters of debate[J]. Virus Research, 2016, 226: 1-6. |
| [26] | SUN Y, CHEN Y, HAN X, et al. Porcine epidemic diarrhea virus in Asia: An alarming threat to the global pig industry[J]. Infection Genetics and Evolution, 2019, 70: 24-26. |
| [27] | LIN C M, SAIF L J, MARTHALER D, et al. Evolution, antigenicity and pathogenicity of global Porcine epidemic diarrhea virus strains[J]. Virus Research, 2016, 226: 20-39. |
| [28] | ZHANG H, ZOU C, PENG O, et al. Global dynamics of porcine enteric Coronavirus PEDV epidemiology, evolution, and transmission[J]. Molecular Biology and Evolution, 2023, 40(3): msad052. |
| [29] | KIM H B, LEE C Y, KIM S J, et al. Medicinal herb extracts ameliorate impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent Porcine epidemic diarrhea virus[J]. Journal of Animal Science and Technology, 2015, 57: 33. |
| [30] | GORDON R K, KOTOWSKI I K, COULSON K F, et al. The role of non-animal origin feed ingredients in transmission of viral pathogens of swine: A review of scientific literature[J]. Frontiers in Veterinary Science, 2019, 6: 273. |
| [31] | NIEDERWERDER M C, HESSE R A. Swine enteric Coronavirus disease: A review of 4 years with Porcine epidemic diarrhoea virus and Porcine deltacoronavirus in the United States and Canada[J]. Transboundary and Emerging Diseases, 2018, 65(3): 660-675. |
| [32] | BAKER K L, MOWRER C L, ZHANG J, et al. Evaluation of a peroxygen-based disinfectant for inactivation of Porcine epidemic diarrhea virus at low temperatures on metal surfaces[J]. Veterinary Microbiology, 2018, 65(3): 99-107. |
| [33] | LI Z, MA Z, LI Y, et al. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines[J]. Microbial Pathogenesis, 2020, 149: 104553. |
| [34] | BAEK P S, CHOI H W, LEE S, et al. Efficacy of an inactivated genotype 2b Porcine epidemic diarrhea virus vaccine in neonatal piglets[J]. Veterinary Immunology and Immunopathology, 2016, 174: 45-49. |
| [35] | JANG G, LEE D, SHIN S, et al. Porcine epidemic diarrhea virus: An update overview of virus epidemiology, vaccines, and control strategies in South Korea[J]. Journal of Veterinary Science, 2023, 24(4): e58. |
| [36] | SATO T, OROKU K, OHSHIMA Y, et al. Efficacy of genogroup 1 based porcine epidemic diarrhea live vaccine against genogroup 2 field strain in Japan[J]. Virology Journal, 2018, 15(1): 28. |
| [37] | 劳梦琴, 刘瑞琳, 陈鹏飞,等. 表达PEDV S蛋白优势抗原区域的重组PRRSV活载体疫苗株的鉴定[J]. 中国动物传染病学报, 2025, 33(1): 155-163. |
| LAO M Q, LIU R L, CHEN P F, et al. Identification of recombinant PRRSV live vector vaccine strains expressing the dominant antigenic region of PEDV S protein[J]. Chinese Journal of Animal Infectious Diseases, 2025, 33(1): 155-163. (in Chinese) | |
| [38] | WU Y, LI W, ZHOU Q, et al. Characterization and pathogenicity of Vero cell-attenuated Porcine epidemic diarrhea virus CT strain[J]. Virology Journal, 2019, 16(1): 121. |
| [39] | 董世娟, 谢春芳, 司伏生,等. 猪流行性腹泻病毒免疫及疫苗研制[J]. 生物工程学报, 2021, 37(8): 2603-2613. |
| DONG S J, XIE C F, SI F S, et al. Immunization against Porcine epidemic diarrhea virus and vaccine development[J]. Chinese Journal of Biotechnology, 2021, 37(8): 2603-2613. (in Chinese) | |
| [40] | WON H, LEE D U, JANG G, et al. Generation and protective efficacy of a cold-adapted attenuated genotype 2b Porcine epidemic diarrhea virus[J]. Journal of Veterinary Science, 2019, 20(4): e32. |
| [41] | LI L, YU X, ZHANG H, et al. In vitro antiviral activity of Griffithsin against Porcine epidemic diarrhea virus[J]. Virus Genes, 2019, 55(2): 174-181. |
| [42] | KO S, GU M J, KIM C G, et al. Rapamycin-induced autophagy restricts Porcine epidemic diarrhea virus infectivity in porcine intestinal epithelial cells[J]. Antiviral Research, 2017, 146: 86-95. |
| [43] | ZHANG Q, YI D, JI C, et al. Monolaurin confers a protective effect against Porcine epidemic diarrhea virus infection in piglets by regulating the interferon pathway[J]. Frontiers in Immunology, 2021, 12: 797476. |
| [44] | CHEN J, XU W, LI P, et al. Antiviral effect of pIFNLs against PEDV and VSV infection in different cells[J]. International Journal of Molecular Sciences, 2022, 23(17): 9661. |
| [45] | DU T, LIANG J, DONG N, et al. Glutathione-capped Ag2S nanoclusters inhibit Coronavirus proliferation through blockage of viral RNA synthesis and budding[J]. Acs Applied Materials & Interfaces, 2018, 10(5): 4369-4378. |
| [46] | GOEDE D, MURTAUGH M P, NEREM J, et al. Previous infection of sows with a "mild" strain of Porcine epidemic diarrhea virus confers protection against infection with a "severe" strain[J]. Veterinary Microbiology, 2015, 176(1-2): 161-164. |
| [47] | SONG D, MOON H, KANG B. Porcine epidemic diarrhea: A review of current epidemiology and available vaccines[J]. Clinical and Experimental Vaccine Research, 2015, 4(2): 166-176. |
| [48] | LEE D H, JEON Y S, PARK C K, et al. Immunoprophylactic effect of chicken egg yolk antibody (IgY) against a recombinant S1 domain of the Porcine epidemic diarrhea virus spike protein in piglets[J]. Archives of Virology, 2015, 160(9): 2197-2207. |
| [49] | 雷丹,李安琪,罗素贤,等. 抗猪流行性腹泻病毒变异株卵黄抗体的制备、纯化及其活性影响因素的研究[J]. 中国畜牧兽医, 2018, 45(8): 2293-2302. |
| LEI D, LI A Q, LUO S X, et al. Preparation, purification and activity factors analysis of IgY against variant of Porcine epidemic diarrhea virus[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(8): 2293-2302. (in Chinese) | |
| [50] | 李桂珍, 王爱富, 李舜,等. 抗猪流行性腹泻病毒卵黄抗体制剂的研究及其临床应用[A].中国畜牧兽医学会兽医病理学分会第二十五次学术交流会、中国病理生理学会动物病理学专业委员会第二十四次学术研讨会、中国实验动物学会实验病理学专业委员会第四次学术研讨会、中国兽医病理学家第四次研讨会[C]. 2019. |
| LI G Z, WANG A F, LI S, et al. Research on yolk antibody preparations against Porcine epidemic diarrhea virus and their clinical applications[A]. Proceedings of the 25th Academic Exchange Conference of Veterinary Pathology Branch of Chinese Society of Animal Husbandry and Veterinary Medicine, the 24th Academic Symposium of Animal Pathology Professional Committee of Chinese Society of Pathophysiology, the 4th Academic Symposium of Laboratory Pathology Professional Committee of Chinese Society of Laboratory Animals, and the 4th Symposium of Chinese Veterinary Pathologists[C].2019. (in Chinese) | |
| [51] | 李冰, 张显浩, 裴仉福,等. 抗猪流行性腹泻病毒卵黄抗体的制备及应用[J]. 中国畜牧兽医, 2014, 41(10): 68-72. |
| LI B, ZHANG X H, PEI Z F, et al. Preparation and application of immunoglobin of yolk against Porcine epidemic diarrhea virus[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(10): 68-72. (in Chinese) | |
| [52] | 卢思嘉, 郑兰兰. 猪流行性腹泻病毒疫苗研究进展[J]. 中国畜牧兽医, 2023, 50(7): 2931-2940. |
| LU S J, ZHENG L L, Research progress on Porcine epidemic diarrhea virus vaccines[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(7): 2931-2940. (in Chinese) | |
| [53] | 杨久春, 刘焕超, 王士军. 中药复方对人工感染猪流行性腹泻病毒仔猪的治疗效果研究[J]. 吉林畜牧兽医, 2019, 40(9): 20-21. |
| YANG J C, LIU H C, WANG S J. Study on the therapeutic effect of traditional Chinese medicine formulas on piglets artificially infected with Porcine epidemic diarrhea virus[J]. Jilin Animal Husbandry and Veterinary Medicine, 2019, 40(9): 20-21. (in Chinese) | |
| [54] | 刘衍芬, 瞿健萍. 穿心莲中药复方对仔猪流行性腹泻的治疗效果及其机制[J]. 中国兽医杂志, 2022, 58(4): 18-23. |
| LIU Y F, QU J P. Therapeutic effect and mechanism of Andrographis paniculata compound on piglet epidemic diarrhea[J]. Chinese Journal of Veterinary Medicine, 2022, 58(4): 18-23. (in Chinese) | |
| [55] | 屈青松, 李智勋, 周晴,等. 发酵中药的研究进展及其“发酵配伍”理论探索[J]. 中草药, 2023, 54(7): 2262-2273. |
| QU Q S, LI Z X, ZHOU Q, et al. Research progress on fermented traditional Chinese medicine[J]. Chinese Traditional and Herbal Drugs, 2023, 54(7): 2262-2273. (in Chinese) | |
| [56] | 甘晓凤. 复方蒲公英发酵物对猪流行性腹泻试验疗效研究[D].长春: 吉林农业大学, 2024. |
| GAN X F. Experimental study on the therapeutic effect of compound dandelion fermentation on porcine epidemic diarrhea[D].Changchun: Jilin Agricultural University, 2024. (in Chinese) | |
| [57] | 甘晓凤, 孟心茹, 郭丽君,等. 几种中药体外抗猪流行性腹泻病毒活性的研究[J]. 中国预防兽医学报, 2024, 46(3): 229-235. |
| GAN X F, MEGN X R, GUO L J, et al. Study on anti-Porcine epidemic diarrhea virus of several traditional Chinese medicines in vitro [J]. Chinese Journal of Preventive Veterinary Medicine, 2024, 46(3): 229-235. (in Chinese) | |
| [58] | 常伟辰, 李帅奇, 李琰,等. 白头翁散煎剂发酵物对感染猪流行性腹泻病毒仔猪肠道屏障功能的影响[J]. 畜牧兽医学报, 2023, 54(10): 4403-4410. |
| CHANG W C, LI S Q, LI Y, et al. Effect of Pulsatilla powder prescription decoction ferments on intestinal barrier function of piglets in fected with Porcine epidemic diarrhea virus[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4403-4410. (in Chinese) | |
| [59] | 杨云乔, 郑建高, 姜军华,等. 复方中药治疗流行性腹泻病毒感染猪的消化道黏膜电镜观察及相关酶检测[J]. 江苏农业科学, 2017, 45(17): 159-163. |
| YANG Y Q, ZHENG J G, JIANG J H, et al. Electron microscopic observation of the gastrointestinal mucosa and related enzyme detection in pigs infected with Porcine epidemic diarrhea virus treated with compound traditional Chinese medicine[J]. Jiangsu Agricultural Sciences, 2017, 45(17): 159-163. (in Chinese) | |
| [60] | 王亚欣, 康艳梅, 方心灵,等. 复合中草药制剂对猪流行性腹泻的治疗效果研究[J]. 中国饲料, 2020, 12: 28-31. |
| WANG Y X, KANG Y M, FANG X L, et al. Study on the therapeutic effect of compound Chinese herbal medicine on porcine epidemic diarrhea[J]. China Feed, 2020, 12: 28-31. (in Chinese) | |
| [61] | 段永团, 姬淑娟, 盛继春. 浅析五苓散在猪冬季流行性腹泻防治中的应用[J]. 中国畜牧兽医文摘, 2017, 33(3): 234. |
| DUAN Y T, JI S J, SHNEG J C. A brief analysis of the application of Wuling powder in the prevention and control of porcine epidemic diarrhea in winter[J]. Chinese Abstracts of Animal Husbandry and Veterinary Medicine, 2017, 33(3): 234. (in Chinese) | |
| [62] | 刘衍芬, 李艳飞, 鄂禄祥. 中药复方对人工感染猪流行性腹泻病毒仔猪的治疗效果研究[J]. 黑龙江畜牧兽医, 2016, 18: 155-158. |
| LIU Y F, LI Y F, E L X. Study on the therapeutic effect of traditional Chinese medicine formulas on piglets artificially infected with Porcine epidemic diarrhea virus[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016, 18: 155-158. (in Chinese) | |
| [63] | HUANG K, ZHANG P, ZHANG Z, et al. Traditional Chinese medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms[J]. Pharmacology & Therapeutics, 2021, 225: 107843. |
| [64] | MA N, ZHANG Z, LIAO F, et al. The birth of artemisinin[J]. Pharmacology & Therapeutics, 2020, 216: 107658. |
| [65] | ZHAO Z, LI Y, ZHOU L, et al. Prevention and treatment of COVID-19 using Traditional Chinese Medicine: A review[J]. Phytomedicine, 2021, 85: 153308. |
| [66] | WEI D, YANG H, ZHANG Y, et al. Nano-traditional Chinese medicine: A promising strategy and its recent advances[J]. Journal of Materials Chemistry B, 2022, 10(16): 2973-2994. |
| [67] | YANG H Y, HAN L, LIN Y Q, et al. Probiotic fermentation of herbal medicine: Progress, challenges, and opportunities[J]. American Journal of Chinese Medicine, 2023, 51(5): 1105-1126. |
| [68] | PENG Y, YANG Z, LI J, et al. Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis[J]. Drug Delivery and Translational Research, 2024, 14(6): 1517-1534. |
| [69] | 张静文, 张懿敏, 孙圣荣. 基于AI及影像组学在乳腺癌新辅助治疗中应用的研究进展[J]. 中国普外基础与临床杂志, 2024, 31(7): 881-885. |
| ZHANG J W, ZHANG Y M, SUN S R. Research progress of application in neoadjuvant therapy for breast cancer based on artificial intelligence and radiomics[J]. Chinese Journal of Bases and Clinics in General Surgery, 2024, 31(7): 881-885. (in Chinese) | |
| [70] | 董斐, 刘建平. 中药复方临床证据整合的信息衰减及对策[J]. 中华中医药杂志, 2020, 35(12): 5975-5978. |
| DONG F, LIU J P. Information attenuation in the integration of Chinese herbal compound clinical evidence and the countermeasure[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(12): 5975-5978. (in Chinese) | |
| [71] | 柏灿, 王洁. 人工智能大语言模型在中医药领域的应用[J]. 西昌学院学报(自然科学版), 2024, 38(2): 62-69. |
| BAI C, WANG J. The application of the artificial intelligence large language model in the field of traditional Chinese medicine[J]. Journal of Xichang University (Natural Science Edition), 2024, 38(2): 62-69. (in Chinese) | |
| [72] | 王泰一, 靳擎, 范梦月,等. GPT还是GLM?大模型应用于中医药现代化的机遇与挑战[J]. 中国药理学与毒理学杂志, 2023, 37(S1): 5-9. |
| WANG T Y, JIN Q, FAN M Y, et al. GPT or GLM? Opportunities and challenges of applying large language models to the modernization of traditional Chinese medicine[J]. Chinese Journal of Pharmacology and Toxicology, 2023, 37(S1): 5-9. (in Chinese) | |
| [73] | 杨青, 黄壮壮, 许刚,等. 人工智能在中药研究中的应用进展[J]. 中成药, 2024, 46(10): 3529-3532. |
| YANG Q, HUANG Z Z, XU G, et al. Advances in the application of artificial intelligence in traditional Chinese medicine research[J]. Chinese Traditional Patent Medicine, 2024, 46(10): 3529-3532. (in Chinese) | |
| [74] | 陈凯先, 张卫东. 中药现代化与中药创新[J]. 中国食品药品监管, 2022, 8: 4-13. |
| CHEN K X, ZHANG W D. Modernization and innovation of traditional Chinese medicine[J]. China Food & Drug Administration Magazine, 2022, 8: 4-13. (in Chinese) | |
| [75] | 世界中医药学会联合会. 网络药理学评价方法指南[J]. 世界中医药,2021,16(4):527-532. |
| WORLD FEDERATION OF CHINESE MEDICINE SOCIETIES. Network pharmacology evaluation method guidance[J]. World Chinese Medicine, 2021,16(4):527-532. (in Chinese) | |
| [76] | 易园园, 张平, 袁军. 基于数据挖掘和网络药理学探讨口疮治疗的中医用药规律及潜在作用机制[J]. 实用口腔医学杂志, 2025, 41(1): 52-59. |
| YI Y Y, ZHANG P, YUAN J. The medication patterns and potential mechanisms of Chinese medicine inthe treatment of oral ulcers studied by data mining and network pharmacology[J]. Journal of Practical Stomatology, 2025, 41(1): 52-59. (in Chinese) | |
| [77] | 陈勇, 洪佳, 朱宝璇,等. 基于网络药理学和实验验证探讨三七总皂苷调控自噬改善糖尿病肾病小鼠肾损伤的作用机制[J]. 中药新药与临床药理, 2025, 36(2): 230-242. |
| CHEN Y, HONG J, ZHU B X, et al. Exploration on the mechanism of panax notoginseng saponins on improving renal injury in diabetic nephropathy mice by regulating autophagy based on network pharmacology and experimental verification[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2025, 36(2): 230-242. (in Chinese) | |
| [78] | 魏颖, 张杰, 孙佳鑫,等. 基于网络药理学与16S rDNA测序的探究:中药通关藤对结肠炎相关结直肠癌小鼠模型的干预作用及机制研究[J]. 重庆医科大学学报,2025,50(10):1363-1374. |
| WEI Y, ZHANG J, SUN J X, et al. Intervention effect and mechanism of Chinese herbal medicine Marsdenia tenacissima on a mouse model of colitis-associated colorectal cancer: A study based on network pharmacology and 16S rDNA sequencing[J]. Journal of Chongqing Medical University, 2025, 50(10): 1363-1374.. (in Chinese) | |
| [79] | 张翠, 喻杨, 罗进芳. 基于网络药理学与分子对接探讨乌梢蛇治疗类风湿关节炎的作用机制[J]. 医学信息, 2024, 37(19): 27-33. |
| ZHANG C, YU Y, LUO J F. Mechanism of Zaocysdhumnades in the treatment of rheumatoid arthritis based on network pharmacology and molecular docking[J]. Journal of Medical Information, 2024, 37(19): 27-33. (in Chinese) | |
| [80] | 向景, 陈祁航, 强晓叶,等. 基于网络药理学和体外实验验证研究复方金银花防治牙周炎的作用机制[J]. 口腔医学研究, 2025, 41(1): 26-34. |
| XIANG J, CHEN Q H, QIANG X Y, et al. Prediction of potential targets and molecular mechanisms of compound honeysuckle in prevention and treatment of periodontitis based on network pharmacology and molecular docking technology[J]. Journal of Oral Science Research, 2025, 41(1): 26-34. (in Chinese) | |
| [81] | 蓝小梅, 覃素萍, 李小敏,等. 基于网络药理学技术探讨四君子汤合失笑散治疗胃癌的作用机制[J]. 中医临床研究, 2025, 17(2): 37-44. |
| LAN X M, QIN S P, LI X M, et al. Exploration on the mechanism of the Sijunzi decoction with Shixiao San in the treatment of gastric cancer based on network pharmacology[J]. Clinical Journal of Chinese Medicine, 2025, 17(2): 37-44. (in Chinese) | |
| [82] | 汪怡, 郭曼曼, 徐倩菲,等. 基于指纹图谱结合化学模式识别以及网络药理学筛选经典名方旋覆代赭汤的质量标志物[J]. 中南药学, 2025, 23(2): 385-391. |
| WANG Y, GUO M M, XU Q F, et al. Screening of quality markers of Xuanfu Daizhe decoction based on fingerprint,chemical pattern recognition and network pharmacology[J]. Central South Pharmacy, 2025, 23(2): 385-391. (in Chinese) | |
| [83] | 王吉, 张冠琦, 何佳. 应用网络药理学和分子对接技术结合人工神经网络探讨化痰脉通片治疗H型高血压的作用机制[J]. 空军军医大学学报,2025,46(4):441-448. |
| WANG J, ZHANG G Q, HE J. Discussion on the mechanism of Huatan Maitong tablets in the treatment of H-type hypertension based on artificial neural network combined with network pharmacology and molecular docking[J]. Journal of Air Force Medical University, 2025, 46(4): 441-448. (in Chinese) | |
| [84] | 汤怡婷, 陈玉鹏, 孔祥英,等. 人工神经网络模型在中药复方研究中的应用进展[J]. 中华中医药杂志, 2021, 36(1): 351-354. |
| TANG Y T, CHEN Y P, KONG X Y, et al. Application progress of artificial neural network model in the research of Chinese medicine compound prescriptions[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(1): 351-354. (in Chinese) | |
| [85] | XU Y, TANG Y, LIU T, et al. Optimization of rare ginsenosides and antioxidant activity quality of ginseng jiaosu based on probiotic strains and fermentation technology[J]. Journal of Food Quality, 2023.DOI:10.1155/2023/5686929 . |
| [86] | OKAMOTO T, SUGIMOTO S, NODA M, et al. Interleukin-8 release inhibitors generated by fermentation of artemisia princeps pampanini herb extract with Lactobacillus plantarum SN13T[J]. Frontiers in Microbiology, 2020, 11: 1159. |
| [87] | 李昆, 李筱雯, 何维敏,等. 中药微生态制剂在畜牧生产中的应用[J]. 畜牧与兽医, 2017, 49(12): 128-133. |
| LI K, LI X W, HE W M, et al. Application of microecological preparations of Chinese medicine in animal production[J]. Animal Husbandry & Veterinary Medicine, 2017, 49(12): 128-133. (in Chinese) | |
| [88] | KESIK-BRODACKA M. Progress in biopharmaceutical development[J]. Biotechnology and Applied Biochemistry, 2018, 65(3): 306-322. |
| [89] | LI B, SHAO H, GAO L, et al. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: A review[J]. Drug Delivery, 2022, 29(1): 2130-2161. |
| [90] | KIAIE S H, MAJIDI ZOLBANIN N, AHMADI A, et al. Recent advances in mRNA-LNP therapeutics: Immunological and pharmacological aspects[J]. Journal of Nanobiotechnology, 2022, 20(1): 276. |
| [91] | ALMEIDA B, NAG O K, ROGERS K E, DELEHANTY J B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery[J]. Molecules, 2020, 25(23): 5672. |
| [92] | ZHAO W, LU X, YUAN Y, et al. Effect of size and processing method on the cytotoxicity of realgar nanoparticles in cancer cell lines[J]. International Journal of Nanomedicine, 2011, 6: 1569-1577. |
| [93] | TONG T, HU H, ZHOU J, et al. Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms[J]. Small (Weinheim an der Bergstrasse, Germany), 2020, 16(13): e1906206. |
| [94] | ERRAMREDDY V V, GHOSH S. Influence of emulsifier concentration on nanoemulsion gelation[J]. Langmuir, 2014, 30(37): 11062-11074. |
| [1] | 张欣欣, 张岳, 崔安, 李金儒, 张芸菁, 何丽霞, 杨桂君, 任玉东, 李广兴. 黑龙江省猪流行性腹泻病毒流行毒株分离鉴定与遗传进化分析[J]. 中国畜牧兽医, 2026, 53(1): 378-389. |
| [2] | 毛驰文, 黄明凤, 李淼淼, 陈兰, 罗怡泓, 连凯琪, 马圣明, 朱二鹏. LC-MS结合网络药理学探讨紫锥菊抗猪流行性腹泻病毒的作用机制[J]. 中国畜牧兽医, 2025, 52(9): 4471-4483. |
| [3] | 王威, 毕祯彬, 顾善绅, 肖叶懿, 周雅静, 吴圣龙, 包文斌, 王海飞. 基于CRISPR/Cas9技术的猪TRIM8基因敲除细胞系构建及其对猪流行性腹泻病毒复制的调控作用[J]. 中国畜牧兽医, 2025, 52(8): 3790-3799. |
| [4] | 黄小久, 雷磊, 彭小烨, 王开心, 陈英仪, 王济贤, 王玉格, 段德勇, 杨毅, 王爱兵. 稳定过表达NM-ⅡA Tail的IPEC-J2细胞系构建及其对PEDV感染的影响研究[J]. 中国畜牧兽医, 2025, 52(5): 2243-2252. |
| [5] | 李欢欢, 余晨敏, 田晓榕, 李瑞, 李宗云, 张焱焱, 赵迪, 王蕾, 侯永清, 吴涛. 儿茶提取物对猪流行性腹泻病毒感染幼龄仔猪结肠的保护作用[J]. 中国畜牧兽医, 2025, 52(3): 1360-1369. |
| [6] | 杨荔, 杜小妹, 刘梦媛, 吴圣龙, 包文斌, 吴正常. 影响猪流行性腹泻病毒复制的关键lncRNA筛选及其功能验证[J]. 中国畜牧兽医, 2025, 52(2): 792-800. |
| [7] | 许大伟, 朱琪, 程安琪, 陈宇山, 刘宇明, 李冰. 基于免疫信息学设计猪流行性腹泻病毒S蛋白的通用多表位疫苗[J]. 中国畜牧兽医, 2025, 52(11): 5381-5392. |
| [8] | 李春震, 李青梅, 邹婉莹, 孟泽锟, 孙亚宁, 杨苏珍, 郭军庆, 张改平. 猪流行性腹泻病毒S1蛋白的真核表达及中和性单克隆抗体制备[J]. 中国畜牧兽医, 2025, 52(10): 4854-4863. |
| [9] | 翟崇凯, 毛福超, 田文静, 王聪慧, 王迎鲜, 张贺伟. 氯硝柳胺及其新型口服纳米药物抗猪流行性腹泻病毒活性及作用机制[J]. 中国畜牧兽医, 2025, 52(10): 4964-4976. |
| [10] | 吕彦卓, 周御, 芦烘德, 王煜轩, 董虹, 何至远. 中药抗猪流行性腹泻病毒研究进展[J]. 中国畜牧兽医, 2025, 52(10): 4977-4988. |
| [11] | 向娇娇, 元娜, 李慧慧, 邵明珠, 赵福平, 张龙超, 王立贤, 石丽君, 陈斌. SOX12基因在Vero细胞感染猪流行性腹泻病毒过程中的功能研究[J]. 中国畜牧兽医, 2025, 52(1): 289-297. |
| [12] | 刘青, 顾天越, 包利霞, 朱凡杰, 王鑫源, 刘婷婷, 朱晓琛, 鄢明华, 董志民, 王利丽, 张东超, 金天明. PEDV、TGEV与PDCoV S蛋白表位基因三联疫苗的构建及其鉴定[J]. 中国畜牧兽医, 2024, 51(8): 3495-3505. |
| [13] | 刘莉莉, 边缘, 吴圣龙, 包文斌, 吴正常. 干扰素刺激基因ISG15对猪流行性腹泻病毒复制的作用及机制分析[J]. 中国畜牧兽医, 2024, 51(6): 2545-2555. |
| [14] | 植玉鹏, 刘雨桐, 陈弟诗, 宫萌菲, 夏学妹, 任玉鹏. 基于网络药理学和分子对接探究白杨素和柚皮素抗PEDV的作用机制及试验验证[J]. 中国畜牧兽医, 2024, 51(4): 1757-1772. |
| [15] | 张洋, 欧云文, 马春霞, 任绍科, 潘琴, 邓书明, 翟佳佳, 杨山山. 猪流行性腹泻疫苗研究进展[J]. 中国畜牧兽医, 2024, 51(11): 5004-5013. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||