中国畜牧兽医 ›› 2020, Vol. 47 ›› Issue (10): 3278-3288.doi: 10.16431/j.cnki.1671-7236.2020.10.027
王伟1, 马艳萍3, 滚双宝1,2
收稿日期:
2020-04-05
出版日期:
2020-10-20
发布日期:
2020-10-17
通讯作者:
滚双宝
E-mail:gunsb@gsau.edu.cn
作者简介:
王伟(1995-),男,甘肃武威人,硕士生,研究方向:动物遗传育种与繁殖,E-mail:wangw7104@163.com
基金资助:
WANG Wei1, MA Yanping3, GUN Shuangbao1,2
Received:
2020-04-05
Online:
2020-10-20
Published:
2020-10-17
摘要: microRNA(miRNA)是一类广泛存在于真核生物中的内源性单链非编码小RNA分子,长度为21~22 nt,以特异的序列互补结合方式调控基因的表达。在经典的miRNA作用机制中,miRNA通常与靶基因3'UTR种子区序列完全或不完全互补配对,从而在转录后水平调控靶基因的表达。越来越多的报道证实,miRNA还可与靶基因5'UTR区、编码区及启动子区结合,进而参与复杂的基因调控过程。随着高通量测序技术和分子生物学实验技术的发展,大量miRNA被鉴定,其参与调控的生物学机制也被逐渐揭示。大量研究表明,miRNA能够参与动物生殖、生长发育、新陈代谢和疾病调控等生物学过程,对维持正常的生命活动具有重要意义。在猪的遗传改良工作中,对主要经济性状(繁殖、生长发育、胴体肉品质、抗病等)进行改良,选育优良品种,是未来养殖业发展的必然趋势。作者就miRNA生成和作用机制及近年来在猪生殖调控、肌肉发育、脂肪沉积和抵抗疾病感染等方面的研究进行综述,为系统了解miRNA在猪重要经济性状调控中的应用提供参考,并为深入开展相关遗传育种研究工作提供依据。
中图分类号:
王伟, 马艳萍, 滚双宝. miRNA在猪主要经济性状调控中的研究进展[J]. 中国畜牧兽医, 2020, 47(10): 3278-3288.
WANG Wei, MA Yanping, GUN Shuangbao. Research Progress on miRNA in Regulation of Main Economic Traits in Pigs[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(10): 3278-3288.
[1] | AMBROS V.The functions of animal microRNAs[J].Nature,2004,431(7006):350-355. |
[2] | BARTEL D P.microRNAs:Genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297. |
[3] | LEE I,AJAY S S,YOOK J I,et al.New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites[J].Genome Research,2009,19(7):1175-1183. |
[4] | LYTLE J R,YARIO T A,STEITZ J A.Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(23):9667-9672. |
[5] | LEE R C,FEINBAUM R L,AMBROS V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854. |
[6] | WIGHTMAN B,HA I,RUVKUN G.Posttranscrip-tional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans[J].Cell,1993,75(5):855-862. |
[7] | REINHART B J,SLACK F J,BASSON M,et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J].Nature,2000,403(6772):901-906. |
[8] | LAGOS-QUINTANA M.Identification of novel genes coding for small expressed RNAs[J].Science,2001,294(5543):853-858. |
[9] | RUBY J G,JAN C,PLAYER C,et al.Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C.elegans[J].Cell,2006,127(6):1193-1207. |
[10] | KOZOMARA A,BIRGAOANU M,GRIFFITHS-JONES S.miRBase:From microRNA sequences to function[J].Nucleic Acids Research,2019,47:D155-D162. |
[11] | HILL W G.Applications of population genetics to animal breeding,from wright,fisher and lush to genomic prediction[J].Genetics,2014,196(1):1-16. |
[12] | 张勤,丁向东,陈瑶生.种猪遗传评估技术研发与评估系统应用[J].中国畜牧杂志,2015,51(8):61-65. ZHANG Q,DING X D,CHEN Y S.Development and application of swine genetic evaluation system in China[J].Chinese Journal of Animal Science,2015,51(8):61-65.(in Chinese) |
[13] | SCHWARZENBACH H,NISHIDA N,CALIN G A,et al.Clinical relevance of circulating cell-free microRNAs in cancer[J].Nature Reviews Clinical Oncology,2014,11(3):145-156. |
[14] | WAHID F,SHEHZAD A,KHAN T,et al.microRNAs:Synthesis,mechanism,function,and recent clinical trials[J].Biochimicaet Biophysica Acta,2010,1803(11):1231-1243. |
[15] | KROL J,LOEDIGE I,FILIPOWICZ W.The widespread regulation of microRNA biogenesis,function and decay[J].Nature Reviews Genetics,2010,11(9):597-610. |
[16] | GAIA P,FRANCESCA M,MARIA B.What is new in the miRNA world regarding osteosarcoma and chondrosarcoma?[J].Molecules,2017,22(3):417. |
[17] | 李杰,任航行,王高富,等.miRNA簇基因在山羊组织和不同时期的C2C12细胞的表达分析[J].西南农业学报,2020,33(1):175-179. LI J,REN H X,WANG G F,et al.Expression analysis of miRNA cluster genes in goats tissues and different periods of C2C12 cells[J].Southwest China Journal of Agricultural Sciences,2020,33(1):175-179.(in Chinese) |
[18] | TÉTREAULT N,GUIRE V D.miRNAs:Their discovery,biogenesis and mechanism of action[J].Clinical Biochemistry,2013,46(10):842-845. |
[19] | CHENDRIMADA T P,GREGORY R I,KUMARAS-WAMY E,et al.TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing[J].Nature,2005,436(7051):740-744. |
[20] | SAYED D,ABDELLATIF M.microRNAs in development and disease[J].Physiological Reviews,2011,91(3):827-887. |
[21] | HA T Y.The role of microRNAs in regulatory T cells and in the immune response[J].Immune Network,2011,11(1):11-41. |
[22] | CORTEZ M A,BUESO-RAMOS C,FERDIN J,et al.microRNAs in body fluids——The mix of hormones and biomarkers[J].Nature Reviews Clinical Oncology,2011,8(8):467-477. |
[23] | PLACE R F,LI L C,POOKOT D,et al.microRNA-373 induces expression of genes with complementary promoter sequences[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(5):1608-1613. |
[24] | LUO L F,YE L Z,LIU G,et al.Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes[J].PLoS One,2010,5(8):e11744. |
[25] | LIAN C,SUN B,NIU S,et al.A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing[J].FEBS Journal,2012,279(6):964-975. |
[26] | LUO Z Y,DAI X L,RAN X Q,et al.Identification and profile of microRNAs in Xiang pig testes in four different ages detected by Solexa sequencing[J].Theriogenology,2018,117:61-71. |
[27] | LUO Z G,LIU Y K,CHEN L,et al.microRNA profiling in three main stages during porcine sperma-togenesis[J].Journal of Assisted Reproduction and Genetics,2015,32(3):451-460. |
[28] | CURRY E,SAFRANSKI T J,PRATT S L.Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility[J].Theriogenology,2011,76(8):1532-1539. |
[29] | 宋春雷.猪卵母细胞成熟和早期胚胎发育过程中的microRNA表达谱研究[D].北京:中国农业科学院,2016. SONG C L.microRNA expression profile during porcine oocyte maturation and early embryo development[D].Beijing:Chinese Academy of Agricultural Sciences,2016.(in Chinese) |
[30] | PAN B,TOMS D,SHEN W,et al.microRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells[J].American Journal of Physiology-Endocrinology and Metabolism,2015,308(6):E525-E534. |
[31] | ZHOU Y,TANG X,SONG Q,et al.Identification and characterization of pig embryo microRNAs by Solexa sequencing[J].Reproduction in Domestic Animals,2013,48(1):112-120. |
[32] | HONG L J,LIU R Z,QIAO X W,et al.Differential microRNA expression in porcine endometrium involved in remodeling and angiogenesis that contributes to embryonic implantation[J].Frontiers in Genetics,2019,10:661. |
[33] | YANG K J,WANG J,WANG K J,et al.Integrated analysis of miRNA-mRNA network reveals different regulatory patterns in the endometrium of Meishan and Duroc sows during mid-late gestation[J].Animals (Basel),2020,10(3):420. |
[34] | WANG P,LI X P,CAO L H,et al.microRNA-148a overexpression improves the early development of porcine somatic cell nuclear transfer embryos[J].PLoS One,2017,12(6):e0180535. |
[35] | VENØ M T,VENØ S T,REHBERG K,et al.Cortical morphogenesis during embryonic development is regulated by miR-34c and miR-204[J].Frontiers in Molecular Neuroscience,2017,10:31. |
[36] | LIU R,WANG M,SU L,et al.The expression pattern of microRNAs and the associated pathways involved in the development of porcine placental folds that contribute to the expansion of the exchange surface area[J].Biology of Reproduction,2015,93(3):62. |
[37] | LIU R,DENG D,LIU X,et al.A miR-18a binding-site polymorphism in CDC423'UTR affects CDC42 mRNA expression in placentas and is associated with litter size in pigs[J].Mammalian Genome,2019,30:34-41. |
[38] | MAI M,JIN L,TIAN S,et al.Deciphering the microRNA transcriptome of skeletal muscle during porcine development[J].PeerJ,2016,4:e1504. |
[39] | 赵拴平.猪骨骼肌生长发育相关基因和microRNA鉴定及其网络互作分析[D].杨凌:西北农林科技大学,2012. ZHAO S P.Identification of genes and miRNA associated with skeletal,muscle development and network interaction in porcine[D].Yangling:Northwest A&F University,2012.(in Chinese) |
[40] | MÁRMOL-SÁNCHEZ E,RAMAYO-CALDAS Y,QUINTANILLA R,et al.Co-expression network analysis predicts a key role of microRNAs in the adaptation of the porcine skeletal muscle to nutrient supply[J].Journal of Animal Science and Biotechnology,2020,11:10. |
[41] | TOWNLEY-TILSON W H D,CALLIS T E,WANG D Z.microRNAs 1,133,and 206:Critical factors of skeletal and cardiac muscle development,function,and disease[J].International Journal of Biochemistry & Cell Biology,2010,42(8):1252-1255. |
[42] | YANG Y,SUN W,WANG R,et al.Wnt antagonist,secreted frizzled-related protein 1,is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs[J].BMC Molecular Biology,2015,16(1):4. |
[43] | MA Y J,YANG Y L,SUN W,et al.SFRP2 affects prenatal muscle development and is regulated by microRNA-1/206 in pigs[J].Journal of Integrative Agriculture,2016,15(1):153-161. |
[44] | 周莲莲.不同猪品种肌肉组织miRNA-1和miRNA-133基因的表达分析[D].长春:吉林大学,2009. ZHOU L L.Analysis of miRNA-1 and miRNA-133 expression in muscle tissues from different porcine species[D].Changchun:Jilin University,2009.(in Chinese) |
[45] | ZHANG X M,CAI S F,CHEN L X,et al.Integrated miRNA-mRNA transcriptomic analysis reveals epigenetic mediated embryonic muscle growth differences between Wuzhishan and Landrace pigs[J].Journal of Animal Science,2019,97(5):1967-1978. |
[46] | XIE S H,CHEN L X,ZHANG X M,et al.An integrated analysis revealed different microRNA-mRNA profiles during skeletal muscle development between Landrace and Lantang pigs[J].Scientific Reports,2017,7(1):2516. |
[47] | XI Y,LIU H J,ZHAO Y Q,et al.Comparative analyses of longissimus muscle miRNAomes reveal microRNAs associated with differential regulation of muscle fiber development between Tongcheng and Yorkshire pigs[J].PLoS One,2018,13(7):e0200445. |
[48] | CHEN X C,ZHAO C,DOU M L,et al.Deciphering the miRNA transcriptome of Rongchang pig longissimus dorsi at weaning and slaughter time points[J].Journal of Animal Physiology and Animal Nutrition,2020,104(3):954-964. |
[49] | BAI L J,LIANG R Y,YANG Y L,et al.microRNA-21 regulates PI3K/Akt/mTOR signaling by targeting TGFβⅠ during skeletal muscle development in pigs[J].PLoS One,2015,10(5):e0119396. |
[50] | ZUO J,WU F,LIU Y,et al.microRNA transcriptome profile analysis in porcine muscle and the effect of miR-143 on the MYH7 gene and protein[J].PLoS One,2015,10(4):e0124873. |
[51] | CAI R,QIMUGE N,MA M L,et al.microRNA-664-5p promotes myoblast proliferation and inhibits myoblast differentiation by targeting serum response factor and Wnt1[J].The Journal of Biological Chemistry,2018,293(50):19177-19190. |
[52] | QIN J,SUN Y,LIU S,et al.microRNA-323-3p promotes myogenesis by targeting Smad2[J].Journal of Cellular Biochemistry,2019,120(11):5863-5871. |
[53] | WANG X Y,CHEN X L,HUANG Z Q,et al.microRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression[J].Animal,2017,11(12):1-7. |
[54] | LIU X,GONG J F,WANG L G,et al.Genome-wide profiling of the microRNA transcriptome regulatory network to identify putative candidate genes associated with backfat deposition in pigs[J].Animals (Basel),2019,9(6):313. |
[55] | WANG Z,LI Q,CHAMBA Y,et al.Identification of genes related to growth and lipid deposition from transcriptome profiles of pig muscle tissue[J].PLoS One,2015,10(10):e0141138. |
[56] | MIAO Z G,WANG S,WANG Y M,et al.Comparison of microRNAs in the intramuscular adipose tissue from Jinhua and Landrace pigs[J].Journal of Cellular Biochemistry,2019,120(1):192-200. |
[57] | PAN S F,CUI Y X,DONG X A,et al.microRNA-130b attenuates dexamethasone-induced increase of lipid accumulation in porcine preadipocytes by suppressing PPAR-γ expression[J].Oncotarget,2017,8(50):87928-87943. |
[58] | PAN S,ZHENG Y,ZHAO R,et al.microRNA-130b and microRNA-374b mediate the effect of maternal dietary protein on offspring lipid metabolism in Meishan pigs[J].British Journal of Nutrition,2013,109(10):1731-1738. |
[59] | 孙文星,南文婷,谷淑华,等.miR-27b及其靶基因PPARγ在肌内和皮下脂肪细胞中的差异表达分析[J].南京农业大学学报,2016,39(2):71-76. SUN W X,NAN W T,GU S H,et al.Differential expression of miR-27b and its target gene PPARγ in intramuscular and subcutaneous adipocytes[J].Journal of Nanjing Agricultural University,2016,39(2):71-76.(in Chinese) |
[60] | 陶璇,何志平,杨雪梅,等.中外不同猪种皮下脂肪miR-128、miR-133b差异表达研究[J].黑龙江畜牧兽医,2019,14:30-34. TAO X,HE Z P,YANG X M,et al.Differential expression analysis of miR-128 and miR-133b in subcutaneous adipose tissue of different pig breeds from home and abroad[J].Heilongjiang Animal Science and Veterinary Medicine,2019,14:30-34.(in Chinese) |
[61] | LIU J G,NING C B,LI B J,et al.Hepatic microRNAome reveals potential microRNA-mRNA pairs association with lipid metabolism in pigs[J].Asian-Australasian Journal of Animal Sciences,2019,32(9):1458-1468. |
[62] | LI Y,LI X,SUN W K,et al.Comparison of liver microRNA transcriptomes of Tibetan and Yorkshire pigs by deep sequencing[J].Gene,2016,577(2):244-250. |
[63] | WANG Q,QI R L,LIU H,et al.Effects of conjugated linoleic acid supplementation on the expression profile of miRNAs in porcine adipose tissue[J].Genes,2017,8(10):271. |
[64] | QI R L,CHEN Y,HUANG J X,et al.Effects of conjugated linoleic acid on the expression levels of miR-27 and miR-143 in pig adipose tissue[J].Genetics and Molecular Research,2015,14(2):6985-6992. |
[65] | ZHANG H Z,CHEN D W,HE J,et al.Long-term dietary resveratrol supplementation decreased serum lipids levels,improved intramuscular fat content and changed the expression of several lipid metabolism-related miRNAs and genes in growing-finishing pigs[J].Journal of Animal Science,2019,97(4):1745-1756. |
[66] | MEULENBERG J J M.PRRSV,the virus[J].Veterinary Research,2000,31(1):11-21. |
[67] | DHORNE-POLLET S,CRISCI E,MACH N,et al.The miRNA-targeted transcriptome of porcine alveolar macrophages upon infection with porcine reproductive and respiratory syndrome virus[J].Scientific Reports,2019,9(1):3160. |
[68] | ZHOU A,LI S F,ZHANG S J.miRNAs and genes expression in Marc-145 cell in response to PRRSV infection[J].Infection Genetics & Evolution,2014,27:173-180. |
[69] | XIAO S,DU T,WANG X,et al.miR-22 promotes porcine reproductive and respiratory syndrome virus replication by targeting the host factor HO-1[J].Veterinary Microbiology,2016,192:226-230. |
[70] | XIAO S Q,WANG X,NI H B,et al.microRNA miR-24-3p promotes porcine reproductive and respiratory syndrome virus replication through suppression of heme oxygenase-1 expression[J].Journal of Virology,2015,89(8):4494-4503. |
[71] | CHANG X B,SHI X B,ZHANG X Z,et al.miR-382-5p promotes porcine reproductive and respiratory syndrome virus (PRRSV) replication by negatively regulating the induction of type Ⅰ interferon[J].FASEB Journal,2020,34(3):4497-4511. |
[72] | CHEN J,SHI X B,ZHANG X Z,et al.microRNA 373 facilitates the replication of porcine reproductive and respiratory syndrome virus by its negative regulation of type Ⅰ interferon induction[J].Journal of Virology,2017,91(3):e01311-16. |
[73] | LI L,WEI Z,ZHOU Y,et al.Host miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by upregulating type Ⅰ interferons[J].Virus Research,2015,195:86-94. |
[74] | LI N,DU T,YAN Y,et al.microRNA let-7f-5p inhibits porcine reproductive and respiratory syndrome virus by targeting MYH9[J].Scientific Reports,2016,6:34332. |
[75] | DANG W,LU C,ZHENG X,et al.miR-125b reduces porcine reproductive and respiratory syndrome virus replication by negatively regulating the NF-κB pathway[J].PLoS One,2013,8(2):e55838. |
[76] | GUO X K,ZHANG Q,GAO L,et al.Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection[J].Journal of Virology,2013,87(2):1159-1171. |
[77] | LIU F,ZHENG H,TONG W,et al.Identification and analysis of novel viral and host dysregulated microRNAs in variant pseudorabies virus-infected PK15 cells[J].PLoS One,2016,11(3):e0151546. |
[78] | ZHENG H Q,XU L,LIU Y Z,et al.microRNA-221-5p inhibits porcine epidemic diarrhea virus replication by targeting genomic viral RNA and activating the NF-κB pathway[J].International Journal of Molecular Sciences,2018,19(11):3381. |
[79] | 杜子栋.E.coli F18敏感型和抵抗型断奶仔猪十二指肠差异miRNAs的筛选及验证分析[D].扬州:扬州大学,2012. DU Z D.Analysis of differential miRNAs in duodenum of E.coli F18 sensitive and resistant weaned piglets[D].Yangzhou:Yangzhou University,2012.(in Chinese) |
[80] | 訾臣.miRNAs对断奶仔猪大肠杆菌抗性的调控作用及机制分析[D].扬州:扬州大学,2015. ZI C.Regulation and mechanism analysis of miRNAs on E.coli resistance in weaned piglets[D].Yangzhou:Yangzhou University,2015.(in Chinese) |
[81] | SUN L,WU S,DAI C H,et al.Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets[J].Bioscience Reports,2018,38(1):BSR20171160. |
[82] | YAO M,GAO W,YANG J,et al.The regulation roles of miR-125b,miR-221 and miR-27b in porcine Salmonella infection signalling pathway[J].Bioscience Reports,2016,36(4):e00375. |
[83] | 闫尊强.C型产气荚膜梭菌性腹泻仔猪脾脏lncRNA、mRNA和miRNA测序及功能分析[D].兰州:甘肃农业大学,2019. YAN Z Q.Sequencing and characterization of lncRNA,mRNA and miRNA in the spleen of piglet diarrhea caused by Clostridium perfringens type C[D].Lanzhou:Gansu Agricultural University,2019.(in Chinese) |
[84] | WANG P F,HUANG X Y,YAN Z Q,et al.Analyses of miRNA in the ileum of diarrheic piglets caused by Clostridium perfringens type C[J].Microbial Pathogenesis,2019,136:103699. |
[1] | 吕玲燕, 孙如玉, 林昌华, 张胜斌, 覃秀珍, 柏秀芳, 吴永绍, 陈钊, 刘磊, 张冰, 蒋家霞, 张家庆. 后备母猪发情期和乏情期下丘脑-垂体-卵巢性腺轴miRNA-mRNA表达谱比较分析[J]. 中国畜牧兽医, 2025, 52(7): 2965-2980. |
[2] | 郁希龙, 张小雨, 冀凤杰, 胡诚军, 彭维祺, 徐良梅, 吕仁龙, 武洪志. 不同净能水平饲粮对屯昌猪结肠微生物区系和短链脂肪酸组成的影响[J]. 中国畜牧兽医, 2025, 52(7): 3093-3103. |
[3] | 吴诗樵, 陈亮. 饲粮纤维水平和食糜收集期对生长猪回肠食糜消化酶活性、养分流量和短链脂肪酸组分的影响[J]. 中国畜牧兽医, 2025, 52(7): 3136-3144. |
[4] | 李指全, 傅思静, 徐舒平, 高萌若, 杨涛涛, 张志榜, 李凯, 李鹏成. 武夷黑猪HSPA5基因克隆、生物信息学分析及组织表达研究[J]. 中国畜牧兽医, 2025, 52(7): 3214-3224. |
[5] | 聂晶坤, 张雅轩, 杨希妍, 王素青, 朱晓萍, 赵云翔. 杜洛克公猪精液性状的遗传参数估计[J]. 中国畜牧兽医, 2025, 52(7): 3256-3263. |
[6] | 陈志安, 章蓓雯, 何敏嘉, 陈美椿, 翁成桢, 黄欣欣, 李鸿喜, 曾仲文, 陈宝良, 邱龙新, 陈洪博, 李晓冰. 猪伪狂犬病病毒gE基因遗传变异及密码子使用偏好性分析[J]. 中国畜牧兽医, 2025, 52(7): 3264-3275. |
[7] | 张丽萌, 李闰婷, 宋月, 聂晓宁, 孔莉, 单靖微, 许盈盈, 王林青, 陈龙欣. 猪细小病毒NS1蛋白单链抗体库的构建及筛选[J]. 中国畜牧兽医, 2025, 52(7): 3276-3285. |
[8] | 阮诗慧, 刘春艳, 韦洋洋, 何逸懿, 吴绮雯, 熊云霞, 杨雪芬, 王丽, 易宏波. 猪δ冠状病毒对断奶仔猪肠道细胞外基质及其动态变化的影响[J]. 中国畜牧兽医, 2025, 52(7): 3297-3307. |
[9] | 张翩, 陈晶, 张晓晓, 麦小鹏, 唐科, 向华, 王刚, 罗胜军, 马惠海, 袁子国, 王晓虎. 弓形虫GRA1蛋白表达及间接ELISA检测方法的建立[J]. 中国畜牧兽医, 2025, 52(7): 3308-3320. |
[10] | 章冰艳, 范瑞, 冯书堂, 贾俊婷, 张建斌, 马玉媛. 无PERV传染性“中畜”五指山小型猪近交系全基因组重测序分析[J]. 中国畜牧兽医, 2025, 52(6): 2459-2467. |
[11] | 杨泉, 李晓, 闫尊强, 王鹏飞, 黄晓宇, 高小莉, 杨巧丽, 滚双宝, 杨姣姣. 合作猪CXCL12基因克隆、生物信息学分析及组织表达研究[J]. 中国畜牧兽医, 2025, 52(6): 2482-2493. |
[12] | 任灏, 朱怡轩, 晁婷婷, 王孝义, 鲁绍雄, 杨永立, 陈强, 李明丽. 不同生长速度撒坝猪背最长肌lncRNA筛选与功能预测[J]. 中国畜牧兽医, 2025, 52(6): 2494-2505. |
[13] | 劳缨迪, 候彩琴, 李新, 郭益文, 胡德宝, 郭宏, 张林林, 丁向彬. 畜禽肌内脂肪沉积相关基因研究进展[J]. 中国畜牧兽医, 2025, 52(6): 2603-2611. |
[14] | 曹丽华, 李华丽, 任慧波, 罗保明, 刘莹莹, 崔清明, 邓缘, 朱吉, 胡雄贵, 罗建辉, 左剑波, 陈晨, 彭英林. 性别和屠宰体重对广益黑猪胴体性能和肉品质的影响[J]. 中国畜牧兽医, 2025, 52(6): 2612-2625. |
[15] | 刘嘉逸, 吴华, 沈童, 王凯龙, 王文胜, 陈自鑫. 黑果枸杞提取物对八眉三元猪生长性能、屠宰性能、抗氧化功能及肉品质的影响[J]. 中国畜牧兽医, 2025, 52(6): 2637-2649. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||