China Animal Husbandry & Veterinary Medicine ›› 2023, Vol. 50 ›› Issue (10): 4133-4140.doi: 10.16431/j.cnki.1671-7236.2023.10.027
• Genetics and Breeding • Previous Articles Next Articles
XIE Fang, LUO Junyi, CHEN Ting, XI Qianyun, ZHANG Yongliang, SUN Jiajie
Received:
2023-03-26
Online:
2023-10-05
Published:
2023-09-26
CLC Number:
XIE Fang, LUO Junyi, CHEN Ting, XI Qianyun, ZHANG Yongliang, SUN Jiajie. Research Progress on Non-coding RNA Regulating Intermuscular Fat Deposition in Pig[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(10): 4133-4140.
[1] SCHUMACHER M,DELCURTO-WYFFELS H,THOMSON J,et al.Fat deposition and fat effects on meat quality-A review[J].Animals (Basel),2022,12(12):1550. [2] 杨茜梓,胡睿智,贺建华,等.影响猪肌间脂肪沉积的主要因素及潜在调控机理[J].动物营养学报,2021,33(3):1266-1276. YANG X Z,HU R Z,HE J H,et al.Main factors affecting porcine intermuscular fat deposition and potential regulation mechanism[J].Chinese Journal of Animal Nutrition,2021,33(3):1266-1276.(in Chinese) [3] MILLER R.Drivers of consumer liking for beef,pork,and lamb:A review[J].Foods,2020,9(4):428. [4] LIU S,HUANG J,WANG X,et al.Transcription factors regulate adipocyte differentiation in beef cattle[J].Animal Genetics,2020,51(3):351-357. [5] MUÑOZ M,GARCÍA-CASCO J M,CARABALLO C,et al.Identification of candidate genes and regulatory factors underlying intramuscular fat content through longissimus dorsi transcriptome analyses in heavy Iberian pigs[J].Frontiers in Genetics,2018,9:608. [6] LI Q,HUANG Z,ZHAO W,et al.Transcriptome analysis reveals long intergenic non-coding RNAs contributed to intramuscular fat content differences between Yorkshire and Wei pigs[J].International Journal of Molecular Sciences,2020,21(5):1732. [7] PALAZZO A F,LEE E S.Non-coding RNA:What is functional and what is junk?[J].Frontiers in Genetics,2015,6:2. [8] KATARIA P,SURELA N,CHAUDHARY A,et al.miRNA:Biological regulator in host-arasite interaction during malaria infection[J].International Journal of Environmental Research and Public Health,2022,19(4):2395. [9] O'BRIEN J,HAYDER H,ZAYED Y,et al.Overview of microRNA biogenesis,mechanisms of actions,and circulation[J].Frontiers in Endocrinology,2018,9:402. [10] XIAO M,LI J,LI W,et al.microRNAs activate gene transcription epigenetically as an enhancer trigger[J].RNA Biology,2017,14(10):1326-1334. [11] CORREIA DE SOUSA M,GJORGJIEVA M,DOLICKA D,et al.Deciphering miRNAs' action through miRNA editing[J].International Journal of Molecular Sciences,2019,20(24):6249. [12] GJORGJIEVA M,SOBOLEWSKI C,DOLICKA D,et al.miRNAs and NAFLD:From pathophysiology to therapy[J].Gut,2019,68(11):2065-2079. [13] MA T,JIA H,JI P,et al.Identification of the candidate lncRNA biomarkers for acute kidney injury:A systematic review and meta-analysis[J].Expert Review of Molecular Diagnostics,2021,21(1):77-89. [14] DENIZ E,ERMAN B.Long noncoding RNA (lincRNA),a new paradigm in gene expression control[J].Functional & Integrative Genomics,2017,17(2-3):135-143. [15] ZUCKERMAN B,RON M,MIKL M,et al.Gene architecture and sequence composition underpin selective dependency of nuclear export of long RNAs on NXF1 and the TREX complex[J].Molecular Cell,2020,79(2):251-267. [16] DUTTA A,LI H,ABOUNADER R.Cryptic lncRNA-encoded ORFs:A hidden source of regulatory proteins[J].The Journal of Clinical Investigation,2023,133(5):e167271. [17] STATELLO L,GUO C J,CHEN L L,et al.Gene regulation by long non-coding RNAs and its biological functions[J].Nature Reviews Molecular Cell Biology,2021,22(2):96-118. [18] WANG L X,WAN C,DONG Z B,et al.Integrative analysis of long noncoding RNA (lncRNA),microRNA (miRNA) and mRNA expression and construction of a competing endogenous RNA (ceRNA) network in metastatic melanoma[J].Medical Science Monitor,2019,25:2896-2907. [19] GAO Y,WANG S,MA Y,et al.Circular RNA regulation of fat deposition and muscle development in cattle[J].Veterinary Medicine and Science,2022,8(5):1-10. [20] HUANG A,ZHENG H,WU Z,et al.Circular RNA-protein interactions:Functions,mechanisms,and identification[J].Theranostics,2020,10(8):3503-3517. [21] THOMAS L F,SAETROM P.Circular RNA are depleted of polymorphisms at microRNA binding sites[J].Bioinformatics,2014,30(16):2243-2246. [22] PAULA M,ALLISON J,HANG H,et al.Transcriptional regulation of adipogenesis[J].Comprehensive Physiology,2017,7(2):635-674. [23] UEZUMI A,FUKADA S,YAMAMOTO N,et al.Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle[J].Nature Cell Biology,2010,12:143-152. [24] UEZUMI A,FUKADA S,YAMAMOTO N,et al.Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle[J].Cell Death and Disease,2014,5:e1186. [25] LI X,FU X,YANG G,et al.Review:Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals[J].Animal,2020,14(2):312-321. [26] GONZALEZ D,CONTRERAS O,REBOLLEDO D L,et al.ALS skeletal muscle shows enhanced TGF-β signaling,fibrosis and induction of fibro/adipogenic progenitor markers[J].PLoS One,2017,12(5):e0177649. [27] JURGEN S,VALLECILLO G P,VOM H,et al.Odd skipped-related 1 (Osr1) identifies muscle-interstitial fibro-adipogenic progenitors (FAPs) activated by acute injury[J].Stem Cell Research,2018,32:8-16. [28] JOE A W,YI L,NATARAJAN A,et al.Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis[J].Nature Cell Biology,2010,12:153-163. [29] KOPINKE D,ROBERSON E C,REITER J F,et al.Ciliary Hedgehog signaling restricts injury-induced adipogenesis[J].Cell,2017,170(2):340-351. [30] SUN Y M,QIN J,LIU S G,et al.PDGFRα regulated by miR-34a and FoxO1 promotes adipogenesis in porcine intramuscular preadipocytes through ERK signaling pathway[J].International Journal of Molecular Sciences,2017,18(11):2424. [31] LI X,FU X,YANG G,et al.Review:Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals[J].Animal,2020,14(2):312-321. [32] 刘慧莹.猪肌内脂肪沉积相关miRNA的鉴定及其功能研究[D].武汉:华中农业大学,2014. LIU H Y.Identification and function study of miRNA associated with porcine intramuscular fat deposition[D].Wuhan:Huazhong Agricultural University,2014.(in Chinese) [33] MIAO Z,SHAN W,WANG Y,et al.Comparison of microRNAs in the intramuscular adipose tissue from Jinhua and Landrace pigs[J].Journal of Cellular Biochemistry,2019,120(1):192-200. [34] SUN Y,WANG S,LIU H,et al.Profiling and characterization of miRNAs associated with intramuscular fat content in Yorkshire pigs[J].Animal Biotechnology,2020,31(3):1-8. [35] PROSDOCIMO D A,SABEH M K,JAIN M K.Kruppel-like factors in muscle health and disease[J].Trends in Cardiovascular Medicine,2015,25(4):278-287. [36] DU J,XU Y,ZHANG P,et al.microRNA-125a-5p affects adipocytes proliferation,differentiation and fatty acid composition of porcine intramuscular fat[J].International Journal of Molecular Sciences,2018,19(2):1-3. [37] XU K,JI M,HUANG X,et al.Differential regulatory roles of microRNAs in porcine intramuscular and subcutaneous adipocytes[J].Journal of Agricultural and Food Chemistry,2020,68(13):3954-3962. [38] LIU H C,WEI W,LIN W M,et al.miR-32-5p regulates lipid accumulation in intramuscular fat of Erhualian pigs by suppressing KLF3[J].Lipids,2021,56(3):279-287. [39] ZHANG X,YOUNG H A.PPAR and immune system-What do we know?[J].International Immunopharmacology,2002,2(8):1029-1044. [40] WEI W,SUN W,HAN H,et al.miR-130a regulates differential lipid accumulation between intramuscular and subcutaneous adipose tissues of pigs via suppressing PPARG expression[J].Gene,2017,636:23-29. [41] WANG W,LI X,DING N,et al.miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4[J].BMC Genetics,2020,21(1):1-11. [42] MASHEK D G,BORNFELDT K E,COLEMAN R A,et al.Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family[J].Journal of Lipid Research,2004,45(10):1958-1961. [43] DING N,WANG W,TENG J,et al.miR-26a-5p regulates adipocyte differentiation via directly targeting ACSL3 in adipocytes[J].Adipocyte,2023,12(1):1-10. [44] SHI X,LIU S,METGES C C,et al.C/EBP-beta drives expression of the nutritionally regulated promoter IA of the acetyl-CoA carboxylase-alpha gene in cattle[J].Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2010,1799(8):561-567. [45] GAN M,SHEN L,FAN Y,et al.ssc-miR-451 regulates porcine primary adipocyte differentiation by targeting ACACA[J].Animals,2020,10(10):1891. [46] ZHANG Q,CAI R,TANG G,et al.miR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intramuscular preadipocytes[J].Journal of Animal Science and Biotechnology,2021,12(1):1-16. [47] HUANG W,ZHANG X,LI A,et al.Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds[J].Cellular Physiology & Biochemistry,2018,50(6):2406-2422. [48] WANG L,XIE Y,CHEN W,et al.Identification and functional prediction of long noncoding RNAs related to intramuscular fat content in Laiwu pigs[J].Animal Bioscience,2022,35(1):115-125. [49] TAN L,CHEN Z,TENG M,et al.Genome-wide analysis of mRNAs,lncRNAs,and circRNAs during intramuscular adipogenesis in Chinese Guizhou Congjiang pigs[J].PLoS One,2022,17(1):e0261293. [50] YANG X M,LIANG Y,ZHONG Z J,et al.Comparison of long non-coding RNAs in adipose and muscle tissues between seven indigenous Chinese and the Yorkshire pig breeds[J].Animal Genetics,2021,52(5):645-655. [51] SUN Y,CAI R,WANG Y,et al.A newly identified lncRNA lncIMF 4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis[J].Animals (Basel),2020,10(6):926. [52] 孟珊,杨阳,李睿霄,等.lncRNA-6617调控猪肌内前体脂肪细胞分化的筛选与功能研究[J].畜牧兽医学报,2022,53(6):1712-1722. MENG S,YANG Y,LI R X,et al.Screening and functional study of lncRNA-6617 regulating porcine intramuscular preadipocytes differentiation[J].Chinese Journal of Animal and Veterinary Sciences,2022,53(6):1712-1722.(in Chinese) [53] YI X,HE Z,TIAN T,et al.lncIMF 2 promotes adipogenesis in porcine intramuscular preadipocyte through sponging miR-217[J].Animal Biotechnology,2023,34(2):268-279. [54] WANG J,CHEN M Y,CHEN J F,et al.lncRNA IMFlnc1 promotes porcine intramuscular adipocyte adipogenesis by sponging miR-199a-5p to up-regulate CAV-1[J].BMC Molecular and Cell Biology,2020,21(1):1-16. [55] LI J,ZHAO X,WANG Y,et al.Comprehensive analysis of differentially expressed mRNAs,lncRNAs and circRNAs related to intramuscular fat deposition in Laiwu pigs[J].Genes,2022,13(8):1349. [56] QI K,LIU Y,LI C,et al.Construction of circRNA-related ceRNA networks in longissimus dorsi muscle of Queshan Black and Large White pigs[J].Molecular Genetics & Genomics,2022,297(1):101-112. [57] 李嫒,张秀秀,黄万龙,等.大白猪和莱芜猪肌内脂肪组织circRNAs的鉴定与分析[J].畜牧兽医学报,2018,49(7):1343-1353. LI A,ZHANG X X,HUANG W L,et al.Identification and analysis of circRNAs in intramuscular adipose tissues between Large White and Laiwu pigs[J].Chinese Journal of Animal and Veterinary Sciences,2018,49(7):1343-1353.(in Chinese) [58] YOUSUF S,LI A,FENG H,et al.Genome-wide expression profiling and networking reveals an imperative role of IMF-associated novel circRNAs as ceRNA in pigs[J].Cells,2022,11(17):2638. [59] LI B,HE Y,WU W,et al.Circular RNA profiling identifies novel circPPARA that promotes intramuscular fat deposition in pigs[J].Journal of Agricultural and Food Chemistry,2022,70(13):4123-4137. [60] LIU Y,DOU Y,QI K,et al.circSETBP1 acts as a miR-149-5p sponge to promote intramuscular fat deposition by regulating CRTCs[J].Journal of Agricultural and Food Chemistry,2022,70(40):12841-12851. |
[1] | YU Xilong, ZHANG Xiaoyu, JI Fengjie, HU Chengjun, PENG Weiqi, XU Liangmei, LYU Renlong, WU Hongzhi. Effects of Diets with Different Net Energy Levels on Colon Microflora and Short-chain Fatty Acid Composition in Tunchang Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3093-3103. |
[2] | LU Xinxin, FU Kaibo, LI Siman, ZHANG Haihua, ZHANG Haijun, QIU Kai, WU Shugeng. Effect of Dietary Malic Acid Supplemented in the Initial Growth Stage on Growth Performance, Meat Quality, Serum Biochemical and Intestinal Health of Broilers [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3104-3115. |
[3] | WU Shiqiao, CHEN Liang. Effects of Dietary Fiber Level and Digista Collection Period on Digestive Enzyme Activity, Nutrient Flow and Short-Chain Fatty Acid Composition in the Ileal Digesta of Growing Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3136-3144. |
[4] | LI Zhiquan, FU Sijing, XU Shuping, GAO Mengruo, YANG Taotao, ZHANG Zhibang, LI Kai, LI Pengcheng. Cloning, Bioinformatics Analysis and Tissue Expression of HSPA5 Gene in Wuyi Black Pig [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3214-3224. |
[5] | RUAN Shihui, LIU Chunyan, WEI Yangyang, HE Yiyi, WU Qiwen, XIONG Yunxia, YANG Xuefen, WANG Li, YI Hongbo. Effect of PDCoV on the Extracellular Matrix of the Intestine and Its Dynamic Changes in Weaned Piglets [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3297-3307. |
[6] | ZHANG Pian, CHEN Jing, ZHANG Xiaoxiao, MAI Xiaopeng, TANG Ke, XIANG Hua, WANG Gang, LUO Shengjun, MA Huihai, YUAN Ziguo, WANG Xiaohu. Expression of GRA1 Protein of Toxoplasma gondii and Establishment of an Indirect ELISA Detection Method [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3308-3320. |
[7] | WANG Tao, XUE Ke, ZHANG Guocheng, XU Ziyi, PENG Chengyang, LIANG Xicai, CUI Ziyin, XIA Zhiqiang, ZHANG Zehui. Research Progress on Antibacterial Effect of Epigallocatechin Gallate Based on Anti-virulence Strategy [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3429-3439. |
[8] | ZHANG Bingyan, FAN Rui, FENG Shutang, JIA Junting, ZHANG Jianbin, MA Yuyuan. Whole Genome Resequencing Analysis of PERV Non-transmitting Zhong Xu Wuzhishan Mini-pig Inbred Line [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2459-2467. |
[9] | YANG Quan, LI Xiao, YAN Zunqiang, WANG Pengfei, HUANG Xiaoyu, GAO Xiaoli, YANG Qiaoli, GUN Shuangbao, YANG Jiaojiao. Cloning,Bioinformatics Analysis and Tissue Expression of CXCL12 Gene in Hezuo Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2482-2493. |
[10] | REN Hao, ZHU Yixuan, CHAO Tingting, WANG Xiaoyi, LU Shaoxiong, YANG Yongli, CHEN Qiang, LI Mingli. Identification and Functional Prediction of lncRNA in Longissimus Dorsi Muscle of Saba Pigs with Different Growth Rates [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2494-2505. |
[11] | CAO Lihua, LI Huali, REN Huibo, LUO Baoming, LIU Yingying, CUI Qingming, DENG Yuan, ZHU Ji, HU Xionggui, LUO Jianhui, ZUO Jianbo, CHEN Chen, PENG Yinglin. Effects of Gender and Slaughter Weight on Carcass and Meat Quality of Guangyi Black Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2612-2625. |
[12] | LIU Jiayi, WU Hua, SHEN Tong, WANG Kailong, WANG Wensheng, CHEN Zixin. Effects of Extract of Lycium ruthenicum Murr on Growth Performance,Slaughter Performance,Antioxidant Function and Meat Quality of Bamei Ternary Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2637-2649. |
[13] | YU Miao, LI Yanjiao, ZHAO Yanling, CHAO Zhe, WANG Feng, LI Menghan, JIANG Zhiqiang, ZHANG Ting, XUE Xinyu, REN Zili, SUN Ruiping. Effects of Weaning Stress on Intestinal Morphology, Antioxidant Capacity and Nrf2 Signaling Pathway of Wuzhishan Piglets [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2045-2055. |
[14] | SUN Yuli, JIAO Ning, QU Yanghua, ZHANG Lei, ZHANG Xiaolin. Advance on the Feeding Value of Black Soldier Fly Larvae and Its Application in Pig Production [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2066-2077. |
[15] | QIN Xiyu, LIU Xiaoxue, CHAI Yi, LAI Mengxuan, REN Xiaomin, ZHANG Depeng, ZHANG Peng, LIJuntao, LI Yixuan, WANG Ran, HAO Yanling, WU Huijuan, WANG Xiaoyu. Establishment and Evaluation of Double Cannulas Model of Duodenal and Terminal Ileum of Bama Minipigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2078-2087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||