China Animal Husbandry & Veterinary Medicine ›› 2023, Vol. 50 ›› Issue (10): 3950-3958.doi: 10.16431/j.cnki.1671-7236.2023.10.008
• Physiological and Biochemical • Previous Articles Next Articles
HE Yue1, CHEN Mengdi1, BAI Jinhui2, SONG Jixuan2, XIA Guangjun1,2
Received:
2023-05-20
Online:
2023-10-05
Published:
2023-09-26
CLC Number:
HE Yue, CHEN Mengdi, BAI Jinhui, SONG Jixuan, XIA Guangjun. Research Progress on the Regulation of miRNA from Adipose-derived Exosomes on Lipid Metabolism[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(10): 3950-3958.
[1] ZHAO R,ZHAO T,HE Z,et al.Composition,isolation,identification and function of adipose tissue-derived exosomes[J].Adipocyte,2021,10(1):587-604. [2] AMBROS V.The functions of animal microRNAs[J].Nature,2004,431(7006):350-355. [3] BARTEL D P.microRNAs:Target recognition and regulatory functions[J].Cell,2009,136(2):215-233. [4] ZHANG J,LI S,LI L,et al.Exosome and exosomal microRNA:Trafficking,sorting,and function[J].Genomics,Proteomics & Bioinformatics,2015,13(1):17-24. [5] THOMOU T,MORI M A,DREYFUSS J M,et al.Adipose-derived circulating miRNAs regulate gene expression in other tissues[J].Nature,2017,542(7642):450-455. [6] KOERNER A,KRATZSCH J,KIESS W.Adipocytokines:Leptin-The classical,resistin-The controversical,adiponectin-The promising,and more to come[J].Best Practice & Research Clinical Endocrinology & Metabolism,2005,19(4):525-546. [7] SON T,JEONG I,PARK J,et al.Adipose tissue-derived exosomes contribute to obesity-associated liver diseases in long-term high-fat diet-fed mice,but not in short-term[J].Frontiers in Nutrition,2023,10:1162992. [8] KRANENDONK M E G,VISSEREN F L J,VAN HERWAARDEN J A,et al.Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells:Adipose tissue vesicles and insulin signaling[J].Obesity,2014,22(10):2216-2223. [9] 张珈溯.延边黄牛脂源外泌体及其lncRNA-224在肌卫星细胞成脂转分化中的调控作用[D].延吉:延边大学,2022. ZHANG J S.Regulation effect of lipid-derived exosomes and exosomal lncRNA-224 in adipogenic differentiation of muscle satellite cells in Yanbian Yellow cattle[D].Yanji:Yanbian University,2022.(in Chinese) [10] DENG Z,POLIAKOV A,HARDY R W,et al.Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance[J].Diabetes,2009,58(11):2498-2505. [11] HEO J S,CHOI Y,KIM H O.Adipose-derived mesenchymal stem cells promote M2 macrophage phenotype through exosomes[J].Stem Cells International,2019,2019:7921760. [12] SINGH S K,PAL BHADRA M,GIRSCHICK H J,et al.microRNAs-micro in size but macro in function:microRNAs and their roles[J].FEBS Journal,2008,275(20):4929-4944. [13] CAI Y,YU X,HU S,et al.A brief review on the mechanisms of miRNA regulation[J].Genomics,Proteomics & Bioinformatics,2009,7(4):147-154. [14] XU H Y,SHAO J,YIN B Z,et al.Bovine bta-microRNA-1271 promotes preadipocyte differentiation by targeting activation transcription factor 3[J].Biochemistry (Moscow),2020,85(7):749-757. [15] XU H,SHAO J,FANG J,et al.miR-381 targets KCTD15 to regulate bovine preadipocyte differentiation in vitro[J].Hormone and Metabolic Research,2021,53(1):63-70. [16] 邵静.miR-1271、miR-381、miR-17-3p和miR-22-3p对延边黄牛前体脂肪细胞分化的影响[D].延吉:延边大学,2020. SHAO J.Effects of miR-1271,miR-381,miR-17-3p and miR-22-3p on differentiation of Yanbian Yellow cattle precursor adipocytes[D].Yanji:Yanbian University,2020.(in Chinese) [17] ZHANG J S,XU H Y,FANG J C,et al.Integrated microRNA-mRNA analysis reveals the roles of microRNAs in the muscle fat metabolism of Yanbian cattle[J].Animal Genetics,2021,52(5):598-607. [18] 夏广军.miRNA与功能基因转录组联合分析筛选延边黄牛肉质性状候选基因[D].延吉:延边大学,2014. XIA G J.Screening of candidate genes associated to meat quality traits of Yanbian Yellow cattle by a combination of miRNA and functional genes transcriptome[D].Yanji:Yanbian University,2014.(in Chinese) [19] GARCIA-MARTIN R,WANG G,BRANDÃO B B,et al.microRNA sequence codes for small extracellular vesicle release and cellular retention[J].Nature,2022,601(7893):446-451. [20] YUE B,YANG H,WU J,et al.Characterization and transcriptome analysis of exosomal and nonexosomal RNAs in bovine adipocytes[J].International Journal of Molecular Sciences,2020,21(23):9313. [21] FERRANTE S C,NADLER E P,PILLAI D K,et al.Adipocyte-derived exosomal miRNAs:A novel mechanism for obesity-related disease[J].Pediatric Research,2015,77(3):447-454. [22] CHEN L,SONG J,CUI J,et al.microRNAs regulate adipocyte differentiation:microRNAs regulate adipocyte differentiation[J].Cell Biology International,2013,37(6):533-546. [23] HAMMARSTEDT A,HEDJAZIFAR S,JENNDAHL L,et al.WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(7):2563-2568. [24] ZHANG Y,YU M,DAI M,et al.miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2[J].Journal of Cell Science,2017,130(6):1158-1168. [25] WANG T,XU Z.miR-27 promotes osteoblast differentiation by modulating Wnt signaling[J].Biochemical and Biophysical Research Communications,2010,402(2):186-189. [26] LU H,LI X,MU P,et al.Dickkopf-1 promotes the differentiation and adipocytokines secretion via canonical Wnt signaling pathway in primary cultured human preadipocytes[J].Obesity Research & Clinical Practice,2016,10(4):454-464. [27] DUAN D Y,TANG J,TIAN H T,et al.Adipocyte-secreted microvesicle-derived miR-148a regulates adipogenic and osteogenic differentiation by targeting Wnt5a/Ror2 pathway[J].Life Sciences,2021,278:119548. [28] MÜLLER G,SCHNEIDER M,BIEMER-DAUB G,et al.Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis[J].Cellular Signalling,2011,23(7):1207-1223. [29] WANG L,PAN Y,LIU M,et al.Wen-Shen-Tong-Luo-Zhi-Tong decoction regulates bone-fat balance in osteoporosis by adipocyte-derived exosomes[J].Pharmaceutical Biology,2023,61(1):568-580. [30] HONDARES E,IGLESIAS R,GIRALT A,et al.Thermogenic activation induces FGF21 expression and release in brown adipose tissue[J].Journal of Biological Chemistry,2011,286(15):12983-12990. [31] ZHANG Y,SONG K,QI G,et al.Adipose-derived exosomal miR-210/92a cluster inhibits adipose browning via the FGFR-1 signaling pathway in high-altitude hypoxia[J].Scientific Reports,2020,10(1):14390. [32] HENKEL A S,KAVESH M H,KRISS M S,et al.Hepatic overexpression of Abcb11 promotes hypercholesterolemia and obesity in mice[J].Gastroenterology,2011,141(4):1404-1411.e2. [33] QURESHI K.Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease[J].World Journal of Gastroenterology,2007,13(26):3540. [34] ZHANG R,GUO J,WANG Y,et al.Prenatal bisphenol S exposure induces hepatic lipid deposition in male mice offspring through downregulation of adipose-derived exosomal miR-29a-3p[J].Journal of Hazardous Materials,2023,453:131410. [35] KARIBA Y,YOSHIZAWA T,SATO Y,et al.Brown adipocyte-derived exosomal miR-132-3p suppress hepatic Srebf1 expression and thereby attenuate expression of lipogenic genes[J].Biochemical and Biophysical Research Communications,2020,530(3):500-507. [36] AGBU P,CARTHEW R W.microRNA-mediated regulation of glucose and lipid metabolism[J].Nature Reviews Molecular Cell Biology,2021,22(6):425-438. [37] FU X,DONG B,TIAN Y,et al.microRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids[J].Journal of Clinical Investigation,2015,125(6):2497-2509. [38] LI D,SONG H,SHUO L,et al.Gonadal white adipose tissue-derived exosomal miR-222 promotes obesity-associated insulin resistance[J].Aging,2020,12(22):22719-22743. [39] YING W,RIOPEL M,BANDYOPADHYAY G,et al.Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity[J].Cell,2017,171(2):372-384.e12. [40] XU C,WANG L,LIU H,et al.C333H,a novel PPARα/γ dual agonist,has beneficial effects on insulin resistance and lipid metabolism[J].Acta Pharmacologica Sinica,2006,27(2):223-228. [41] ZHANG Y,MEI H,CHANG X,et al.Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR-155[J].Journal of Molecular Cell Biology,2016,8(6):505-517. [42] WALKER A K,JACOBS R L,WATTS J L,et al.A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans[J].Cell,2011,147(4):840-852. [43] YU Y,DU H,WEI S,et al.Adipocyte-derived exosomal miR-27a induces insulin resistance in skeletal muscle through repression of PPARγ[J].Theranostics,2018,8(8):2171-2188. [44] WEN Z,LI J,FU Y,et al.Hypertrophic adipocyte-derived exosomal miR-802-5p contributes to insulin resistance in cardiac myocytes through targeting HSP60[J].Obesity,2020,28(10):1932-1940. [45] DANG S Y,LENG Y,WANG Z X,et al.Exosomal transfer of obesity adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes[J].International Journal of Biological Sciences,2019,15(2):351-368. [46] ZHANG C,WANG K,YANG L,et al.Lipid metabolism in inflammation-related diseases[J].The Analyst,2018,143(19):4526-4536. [47] PAN Y,HUI X,HOO R L C,et al.Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation[J].Journal of Clinical Investigation,2019,129(2):834-849. [48] OGAWA R,TANAKA C,SATO M,et al.Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation[J].Biochemical and Biophysical Research Communications,2010,398(4):723-729. [49] KOKKINOS J,TANG S,RYE K A,et al.The role of fibroblast growth factor 21 in atherosclerosis[J].Atherosclerosis,2017,257:259-265. [50] HUANG W,EUM S Y,ANDRÁS I E,et al.PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities[J].The FASEB Journal,2009,23(5):1596-1606. [51] TANG Y,YANG L J,LIU H,et al.Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis[J].Cell Reports,2023,42(1):111948. [52] XING X,LI Z,YANG X,et al.Adipose-derived mesenchymal stem cells-derived exosome-mediated microRNA-342-5p protects endothelial cells against atherosclerosis[J].Aging,2020,12(4):3880-3898. [53] LIU Y,SUN Y,LIN X,et al.Perivascular adipose-derived exosomes reduce macrophage foam cell formation through miR-382-5p and the BMP4-PPARγ-ABCA1/ABCG1 pathways[J].Vascular Pharmacology,2022,143:106968. [54] YU C,TANG W,LU R,et al.Human adipose-derived mesenchymal stem cells promote lymphocyte apoptosis and alleviate atherosclerosis via miR-125b-1-3p/BCL11B signal axis[J].Annals of Palliative Medicine,2021,10(2):2123-2133. [55] HAN G,LI H,GUO H,et al.The roles and mechanisms of miR-26 derived from exosomes of adipose-derived stem cells in the formation of carotid atherosclerotic plaque[J].Annals of Translational Medicine,2022,10(20):1134. [56] YANG W,TU H,TANG K,et al.miR-3064 in epicardial adipose-derived exosomes targets neuronatin to regulate adipogenic differentiation of epicardial adipose stem cells[J].Frontiers in Cardiovascular Medicine,2021,8:709079. [57] MAURIZI G,DELLA GUARDIA L,MAURIZI A,et al.Adipocytes properties and crosstalk with immune system in obesity-related inflammation[J].Journal of Cellular Physiology,2018,233(1):88-97. [58] WEI M,GAO X,LIU L,et al.Visceral adipose tissue derived exosomes exacerbate colitis severity via pro-inflammatory miRNAs in high fat diet fed mice[J].ACS Nano,2020,14(4):5099-5110. [59] ZHANG D,YAO X,TENG Y,et al.Adipocytes-derived exosomal microRNA-1224 inhibits M2 macrophage polarization in obesity-induced adipose tissue inflammation via MSI2-mediated Wnt/β-Catenin axis[J].Molecular Nutrition & Food Research,2022,66(18):2100889. [60] WEI S,ZHANG Z,YAN L,et al.miR-20a overexpression in adipose-derived mesenchymal stem cells promotes therapeutic efficacy in murine lupus nephritis by regulating autophagy[J].Stem Cells International,2021,2021:3746335. [61] DU Z,WU T,LIU L,et al.Extracellular vesicles-derived miR-150-5p secreted by adipose-derived mesenchymal stem cells inhibits CXCL1 expression to attenuate hepatic fibrosis[J].Journal of Cellular and Molecular Medicine,2021,25(2):701-715. [62] QIAN W,HUANG L,XU Y,et al.Hypoxic ASCs-derived exosomes attenuate colitis by regulating macrophage polarization via miR-216a-5p/HMGB1 axis[J].Inflammatory Bowel Diseases,2023,29(4):602-619. |
[1] | LYU Lingyan, SUN Ruyu, LIN Changhua, ZHANG Shengbin, QIN Xiuzhen, BAI Xiufang, WU Yongshao, CHEN Zhao, LIU Lei, ZHANG Bing, JIANG Jiaxia, ZHANG Jiaqing. Comparative Analysis of miRNA-mRNA Expression Profile in Hypothalamus-Pituitary-Ovary Gonad Axis During Estrus and Anestrus in Gilts [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 2965-2980. |
[2] | XIA Huanting, ZHENG Chuntian, LI Kaichao, JIANG Liying, CHEN Wei, WANG Shuang, XIA Weiguang, JIN Chenglong, HUANG Xuebing, WANG Shenglin, ZHANG Yanan. Effects of Dietary Quercetin Supplementation on Egg Production Performance, Eggshell Mechanical Property and Lipid Metabolism in Aged Laying Ducks [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3126-3135. |
[3] | LIU Jijun, WANG Fengbo, WEI Feng, JIN Yaping, ZHANG Haisen, CHEN Huatao. Research Progress on the Role of Circadian Clock in Regulating Glucose and Lipid Metabolism Homeostasis of Ketosis in Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3449-3458. |
[4] | ZHANG Zhihao, LU Ligang, ZHANG Zijing, WANG Xiangnan, MIN Jia, HAN Yiwei, PENG Shengkun, LUAN Manru, LIU Aobing, SHI Qiaoting, WANG Eryao. Study on the Role of miRNA from Uterine Exosomes in Embryo Development and Implantation of Xianan Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2691-2704. |
[5] | CAO Chang, LI Yulian, WANG Jie, HE Qing, GONG Yanmei, FAN Zhiyong. Effects of Adding Hyocholic Acid on Body Lipid Metabolism,Intestinal Microorganisms and Bile Acid Metabolism in High-fat Pregnant Mice [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 1999-2011. |
[6] | LIU Sirui, LIU Hongfei, LIU Dapeng, MU Qiming, TANG Hehe, ZHANG He, ZHANG Yongfu, HOU Shuisheng, ZHOU Zhengkui. Screening of Candidate Genes Regulating Fat Deposition in Pekin Ducks by Integrating Genome and Transcriptome [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1468-1477. |
[7] | JIANG Chenxi, CHENG Sufang, WU Guozao, CHEN Juan, GAO Xiaona, GUO Xiaoquan, LIU Ping. Research Progress on the Role of Pulmonary Artery Endothelial Cells in Broiler Ascites Syndrome and the Regulation Mechanism of miRNA [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1522-1532. |
[8] | LI Mengqi, ZHENG Chuntian, CHEN Wei, JIN Chenglong, ZHANG Yanan, WANG Shuang, LI Kaichao, HUANG Xuebing, XIA Weiguang, ZHU Yuanzhao. Effects of Low Protein Amino Acid Balanced Diet on Productive Performance, Egg Quality and Lipid Metabolism in Laying Ducks [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1533-1542. |
[9] | LI Zhiyi, LI Jie, CHEN Chuwen, NONG Yi, WANG Jiayan, WANG Zi, WU Jinbo, LI Zhixiong. Analysis and Identification of miRNA in Leg Muscle Tissue of Tibetan Chicken Embryos at Different Developmental Stages [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1681-1693. |
[10] | BAI Lixia, LI Yang, LI Jianyong. Study on the Mechanism of Caffeic Acid Enhancing Macrophage Immunosuppression [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1844-1851. |
[11] | Siriguleng, YU Wen, JIANG Xiaowei, LI Ziyi, JIN Junjian, BAI Haoyu. The Expression of miR-144-5p in Plasma Exosomes of Different Body Types of Bactrian Camels and the Verification of Target Gene [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1022-1032. |
[12] | LI Jingxuan, LIN Yanjiao, HUANG Qiongjun, HAN Xinyan, ZHANG Yuelang. Research Progress on Non-coding RNA Related to Skeletal Muscle Development in Goats [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 582-592. |
[13] | WANG Yong, MA Chi, WANG Chao, ZHAO Qinan, SUN Zhipeng, TIAN Feng, WANG Li, JIN Hai, LI Changqing. Research Progress on Molecular Mechanism of miRNA and lncRNA Regulating Follicular Development in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 771-780. |
[14] | XIA Minglong, XIAO Yintao, ZHENG Saizhen, TAN Bie, YIN Yulong, CHEN Jiashun, YIN Jie. Analysis of Differentially Expressed Genes and Regulatory Pathways in Intramuscular Fat Deposition of Ningxiang Pigs at Different Developmental Stages [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(9): 3703-3714. |
[15] | XU Haotian, YU Yuetong, LI Jing, MA Zhiyuan, YANG Bin, WANG Zekun, TUO Haixin, QI Meng. Comparative Analysis of miRNA Expression Profiles in Bovine Mammary Epithelial Cells Treated with Lipopolysaccharide and Calcium Ions [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(9): 4066-4079. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||