中国畜牧兽医 ›› 2026, Vol. 53 ›› Issue (2): 995-1008.doi: 10.16431/j.cnki.1671-7236.2026.02.043

• 基础兽医 • 上一篇    下一篇

基于网络药理学、分子对接和细胞试验探究麻杏石甘汤对牛支原体感染的治疗机制

于斋卓1(), 张亮2,3, 陈九2,3, 乌志勇2,3, 朱阳东1, 闫滨1(), 杨宏军2,3()   

  1. 1.山东中医药大学药学院,济南 250355
    2.山东省农业科学院畜牧兽医研究所,山东省畜禽疫病防治与繁育重点实验室,济南 250100
    3.农业农村部畜禽生物组学重点实验室,济南 250100
  • 收稿日期:2025-05-14 出版日期:2026-02-20 发布日期:2026-01-27
  • 通讯作者: 闫滨,杨宏军 E-mail:19510156290@163.com;robinyan2002@163.com;yanghongjun166@163.com
  • 作者简介:于斋卓,E-mail:19510156290@163.com
  • 基金资助:
    宁夏回族自治区重点研发计划(2024BBF02014);国家现代农业产业技术体系(CARS36);山东省重点研发计划(竞争性创新平台)(2022CXPT010);山东省技术创新引导计划(中央引导地方科技发展资金)(YDZX2024015);山东省农业科学院农业科技创新工程(CXGC2025G06)

Exploring the Therapeutic Mechanism of Maxing Shigan Decoction Against Mycoplasma bovis Infection Through Network Pharmacology, Molecular Docking, and Cellular Experiments

YU Zhaizhuo1(), ZHANG Liang2,3, CHEN Jiu2,3, WU Zhiyong2,3, ZHU Yangdong1, YAN Bin1(), YANG Hongjun2,3()   

  1. 1.College of Pharmacy,Shandong University of Traditional Chinese Medicine,Jinan 250355,China
    2.Shandong Key Laboratory of Animal Disease Controlling and Breeding,Institute of Animal Science and Veterinary Medicine,Shandong Academy of Agricultural Sciences,Jinan 250100,China
    3.Key Laboratory of Livestock and Poultry Multi-omics,Ministry of Agriculture and Rural Affairs,Jinan 250100,China
  • Received:2025-05-14 Online:2026-02-20 Published:2026-01-27
  • Contact: YAN Bin, YANG Hongjun E-mail:19510156290@163.com;robinyan2002@163.com;yanghongjun166@163.com

摘要:

目的 借助网络药理学、分子对接及细胞试验深入探究麻杏石甘汤对牛支原体感染的治疗机制,为传统中药的现代化提供科学依据,也为治疗牛支原体感染提供新的策略。 方法 以TCMSP、PubChem、SwissTargetPrediction等生物信息学平台为依托,筛选出麻杏石甘汤各味药物活性成分及相关靶点;通过GeneCards、OMIM数据库获取牛支原体相关疾病的靶点;用STRING数据库构建蛋白-蛋白互作网络,借助Cytoscape 3.9.1软件进行网络拓扑分析,同时用DAVID平台进行GO功能与KEGG通路富集分析;运用PyMOL 2.4.0和AutoDockTool 1.5.6软件完成分子对接与可视化。将MDBK细胞分为空白对照组、模型组及低、中、高剂量(2.5、5和10 mg/mL)麻杏石甘汤组,除空白对照组外,其余各组以感染复数为1 000的牛支原体PG45感染4 h,清洗后分别更换为含药培养基或完全培养基,继续培养24 h,采用实时荧光定量PCR法检测各组细胞中的Ct值及相关炎症因子mRNA表达水平。 结果 网络药理学研究发现,麻杏石甘汤含有134个活性成分,牛支原体相关疾病靶点93个,二者的交集靶点共20个,其中白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、基质金属蛋白酶9(MMP9)、半胱天冬酶3(CASP3)、前列腺素内过氧化物合酶2(PTGS2)等为关键核心靶点。GO功能富集分析主要涉及RNA聚合酶Ⅱ对转录的正向调控、细胞外空间、细胞质、细胞核、细胞因子活性等;KEGG通路富集分析主要涵盖IL-17、TNF、丝裂原活化蛋白激酶(MAPK)等相关信号通路。分子对接结果表明,麻杏石甘汤的活性成分与关键核心靶点的结合能均<-17.8 kJ/mol,具有良好的结合能力。其中,槲皮素与CASP3结合能最小,为-28.87 kJ/mol。细胞试验结果显示,与模型组相比,各剂量麻杏石甘汤组Ct值均显著升高(P<0.05),显著升高了IL-2、IL-10基因表达量(P<0.05),降低了IL-6、IL-8、TNF-α、IL-17ACASP3、MMP9、PTGS2基因表达量(P<0.05)。 结论 本研究通过网络药理学预测及细胞试验验证揭示了麻杏石甘汤通过作用于IL-6、TNF、MMP9等靶点,调控炎症因子的分泌,抑制炎症反应,从而发挥抗牛支原体感染作用。

关键词: 麻杏石甘汤; 牛支原体; 网络药理学; 分子对接

Abstract:

Objective Through the use of network pharmacology, molecular docking, and cell experiments, this study aimed to explore the therapeutic mechanism of Maxing Shigan decoction against Mycoplasma bovis infection, providing scientific basis for the modernization of traditional Chinese medicine and new strategies for the treatment of Mycoplasma bovis infection. Method Relying on bioinformatics platforms such as TCMSP, PubChem and SwissTargetPrediction, the active ingredients of the constituent herbs in Maxing Shigan decoction and their related targets were screened. The targets of Mycoplasma bovis related diseases were obtained through GeneCards and OMIM databases. The STRING database was used to construct protein-protein interaction network, and Cytoscape 3.9.1 software was used for network topology analysis. Meanwhile, the DAVID platform was used for GO function and KEGG pathway enrichment analysis. Molecular docking and visualization were completed using PyMOL 2.4.0 and AutoDockTool 1.5.6 software. MDBK cells were divided into blank control group, model group, and low, medium, and high dose groups (2.5, 5 and 10 mg/mL) of Maxing Shigan decoction. Except for blank control group, all other groups were infected with Mycoplasma bovis PG45 with a multiplicity of infection of 1 000 for 4 h. After cleaning, they were replaced with drug containing medium or complete medium, and continued to be cultured for 24 h. Real-time quantitative PCR was used to detect the Ct value and the mRNA expression of relevant inflammatory factors in each group of cells. Result Network pharmacology analysis revealed that Maxing Shigan decoction contained 134 active ingredients, and there were 93 targets related to Mycoplasma bovis-related diseases. A total of 20 intersection targets were identified between them, among which interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), matrix metallo proteinase 9(MMP9), caspase 3 (CASP3) and prostaglandin peroxide synthase 2 (PTGS2) were the key core targets. GO function enrichment analysis mainly involved positive regulation of transcription by RNA polymerase Ⅱ, extracellular space, cytoplasm, nucleus, cytokine activity, etc. KEGG pathway enrichment analysis mainly covered signaling pathways related to IL-17, TNF, mitogen-activated protein kinase (MAPK),etc. The molecular docking results showed that the binding energy of the active ingredients of Maxing Shigan decoction was less than -17.8 kJ/mol, and had good binding ability. Among them, quercetin had the smallest binding energy to CASP3, which was -28.87 kJ/mol. Cell experiments showed that compared with model group, the Ct values were significantly increased (P<0.05), the expression of IL-2 and IL-10 genes were significantly upregulated (P<0.05), while those of IL-6, IL-8, TNF-α, IL-17A,CASP3, MMP9 and PTGS2 genes were significantly downregulated (P<0.05), in each dose group of Maxing Shigan decoction. Conclusion Through network pharmacology prediction and cell experimental validation, this study revealed that Maxing Shigan decoction exered anti-Mycoplasma bovis infection effects by acting on targets such as IL-6, TNF and MMP9, regulating the secretion of inflammatory factors, and inhibiting inflammatory responses.

Key words: Maxing Shigan decoction; Mycoplasma bovis; network pharmacology; molecular docking

中图分类号: