| [1] |
WANG Y, ZHOU P, ZHOU X, et al. Effect of host genetics and gut microbiome on fat deposition traits in pigs[J]. Frontiers in Microbiology, 2022, 13: 925200.
|
| [2] |
SHEN L, BAI X, ZHAO L, et al. Integrative 3D genomics with multi-omics analysis and functional validation of genetic regulatory mechanisms of abdominal fat deposition in chickens[J]. Nature Communications, 2024, 15(1): 9274.
|
| [3] |
TSENG Y H, CYPESS A M, KAHN C R. Cellular bioenergetics as a target for obesity therapy[J]. Nature Reviews. Drug Discovery, 2010, 9(6): 465-482.
|
| [4] |
JIN W, PATTI M E. Genetic determinants and molecular pathways in the pathogenesis of type 2 diabetes[J]. Clinical Science, 2009, 116(2): 99-111.
|
| [5] |
FUCHS G, SHEMA E, VESTERMAN R, et al. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation[J]. Molecular Cell, 2012, 46(5): 662-673.
|
| [6] |
LIANG Q, XIA W, LI W, et al. RNF20 controls astrocytic differentiation through epigenetic regulation of STAT3 in the developing brain[J]. Cell Death and Differentiation, 2018, 25(2): 294-306.
|
| [7] |
XU Z, SONG Z, LI G, et al. H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation[J]. Nucleic Acids Research, 2016, 44(20): 9681-9697.
|
| [8] |
JEON Y G, NAHMGOONG H, OH J, et al. Ubiquitin ligase RNF20 coordinates sequential adipose thermogenesis with brown and beige fat-specific substrates[J]. Nature Communications, 2024, 15(1): 940.
|
| [9] |
JEON Y G, LEE J H, JI Y, et al. RNF20 Functions as a transcriptional coactivator for PPARγ by promoting NCoR1 degradation in adipocytes[J]. Diabetes, 2020, 69(1): 20-34.
|
| [10] |
ZHAO Y, PAN J, CAO C, et al. RNF20 affects porcine adipocyte differentiation via regulation of mitotic clonal expansion[J]. Cell Proliferation, 2021, 54(12): e13131.
|
| [11] |
WANG T J, LARSON M G, VASAN R S, et al. Metabolite profiles and the risk of developing diabetes[J]. Nature Medicine, 2011, 17(4): 448-453.
|
| [12] |
PATRICK M, GU Z, ZHANG G, et al. Metabolon formation regulates branched-chain amino acid oxidation and homeostasis[J]. Nature Metabolism, 2022, 4(12): 1775-1791.
|
| [13] |
SHE P, REID T M, BRONSON S K, et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle[J]. Cell Metabolism, 2007, 6(3): 181-194.
|
| [14] |
ISLAM M M, WALLIN R, WYNN R M, et al. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex[J]. The Journal of Biological Chemistry, 2007, 282(16): 11893-11903.
|
| [15] |
GREEN C R, WALLACE M, DIVAKARUNI A S, et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis[J]. Nature Chemical Biology, 2016, 12(1): 15-21.
|
| [16] |
ARANY Z, NEINAST M. Branched chain amino acids in metabolic disease[J]. Current Diabetes Reports, 2018, 18(10): 76.
|
| [17] |
SON S M, PARK S J, LEE H, et al. Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A[J]. Cell Metabolism, 2019, 29(1): 192-201.e7.
|
| [18] |
ZHAO Y, YANG S, WANG Y, et al. Molecular characterization, expression profiling, and SNP analysis of the porcine RNF20 gene[J]. Animals, 2020, 10(5):888.
|
| [19] |
TIAN H, NI Z, LAM S M, et al. Precise metabolomics reveals a diversity of aging-associated metabolic features[J]. Small Methods, 2022, 6(7): e2200130.
|
| [20] |
SONG J W, LAM S M, FAN X, et al. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis[J]. Cell Metabolism, 2020, 32(2): 188-202.e5.
|
| [21] |
LIANG X, TAO C, PAN J, et al. Rnf20 deficiency in adipocyte impairs adipose tissue development and thermogenesis[J]. Protein & Cell, 2021, 12(6): 475.
|
| [22] |
MA Q X, ZHU W Y, LU X C, et al. BCAA-BCKA axis regulates WAT browning through acetylation of PRDM16[J]. Nature Metabolism, 2022, 4(1): 106-122.
|
| [23] |
YONESHIRO T, WANG Q, TAJIMA K, et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44[J]. Nature, 2019, 572(7771): 614.
|
| [24] |
XU H, WANG X, GENG G, et al. Association of circulating branched-chain amino acids with cardiovascular diseases: A mendelian randomization study[J]. Nutrients, 2023, 15(7): 1580.
|
| [25] |
ZHAO Y, CHEN C, PAN J, et al. Adipocyte Rnf20 ablation increases the fast-twitch fibers of skeletal muscle via lysophosphatidylcholine 16∶0[J]. Cellular and Molecular Life Sciences, 2023, 80(9): 243.
|
| [26] |
HE A, CHEN X, TAN M, et al. Acetyl-CoA derived from hepatic peroxisomal β-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation[J]. Molecular Cell, 2020, 79(1): 30-42.e4.
|
| [27] |
BATRAN R AL, GOPAL K, CAPOZZI M E, et al. Pimozide alleviates hyperglycemia in diet-induced obesity by inhibiting skeletal muscle ketone oxidation[J]. Cell Metabolism, 2020, 31(5): 909-919.e8.
|
| [28] |
LACKEY D E, LYNCH C J, OLSON K C, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity[J]. American Journal of Physiology-Endocrinology and Metabolism, 2013, 304(11): E1175-E1187.
|
| [29] |
HSIAO G, CHAPMAN J, OFRECIO J M, et al. Multi-tissue, selective PPARγ modulation of insulin sensitivity and metabolic pathways in obese rats[J]. American Journal of Physiology. Endocrinology and Metabolism, 2011, 300(1): E164-E174.
|
| [30] |
DENG Z, AI H, SUN M, et al. Mechanistic insights into nucleosomal H2B monoubiquitylation mediated by yeast Bre1-Rad6 and its human homolog RNF20/RNF40-hRAD6A[J]. Molecular Cell, 2023, 83(17): 3080-3094.e14.
|