[1] MLECZKO-SANECKA K,SILVESTRI L.Cell-type-specific insights into iron regulatory processes[J].American Journal of Hematology,2021,96(1):110-127. [2] KANG T,HAN Z,ZHU L J,et al.TFR1 knockdown alleviates iron overload and mitochondrial dysfunction during neural differentiation of Alzheimer’s disease-derived induced pluripotent stem cells by interacting with GSK3B[J].European Journal of Medical Research,2024,29(1):101. [3] CAVERZAN M D,IBARRA L E.Advancing glioblastoma treatment through iron metabolism:A focus on TfR1 and ferroptosis innovations[J].International Journal of Biological Macromolecules,2024,278(Pt 2):134777. [4] CHEN A C,DONOVAN A,NED-SYKES R,et al.Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(37):11714-11719. [5] LI C,ZHOU L Y,YIN X Z.Pathophysiological aspects of transferrin—A potential nano-based drug delivery signaling molecule in therapeutic target for varied diseases[J].Frontiers in Pharmacology,2024,15:1342181. [6] HANSEN F J,MITTELSTÄDT A,CLAUSEN F N,et al.CD71 expressing circulating neutrophils serve as a novel prognostic biomarker for metastatic spread and reduced outcome in pancreatic ductal adenocarcinoma patients[J].Scientific Reports,2024,14(1):21164. [7] VOSS K,SEWELL A E,KRYSTOFIAK E S,et al.Elevated transferrin receptor impairs T cell metabolism and function in systemic lupus erythematosus[J].Science Immunology,2023,8(79):eabq0178. [8] WEINGARTL H M,DERBYSHIRE J B.Evidence for a putative second receptor for Porcine transmissible gastroenteritis virus on the villous enterocytes of newborn pigs[J].Journal of Virology,1994,68(11):7253-7259. [9] ZHANG S,HU W W,YUAN L F,et al.Transferrin receptor 1 is a supplementary receptor that assists Transmissible gastroenteritis virus entry into porcine intestinal epithelium[J].Cell Communication and Signaling,2018,16(1):69. [10] KAEFFER B,BOTTREAU E,VELGE P,et al.Epithelioid and fibroblastic cell lines derived from the ileum of an adult histocompatible miniature boar (d/d haplotype) and immortalized by SV40 plasmid[J].European Journal of Cell Biology,1993,62(1):152-162. [11] MARIANI V,PALERMO S,FIORENTINI S,et al.Gene expression study of two widely used pig intestinal epithelial cell lines:IPEC-J2 and IPI-2I[J].Veterinary Immunology and Immunopathology,2009,131(3-4):278-284. [12] CHEN W,DING R X,TANG J L,et al.Knocking out SST gene of BGC823 gastric cancer cell by CRISPR/Cas9 enhances migration,invasion and expression of SEMA5A and KLF2[J].Cancer Management and Research,2020,12:1313-1321. [13] XIE Z C,JIAO H P,XIAO H N,et al.Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J].Antiviral Research,2020,174:104696. [14] ZHAO Y P,ZHANG C S,LIU W W,et al.An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design[J].Scientific Reports,2016,6:23890. [15] JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821. [16] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823. [17] HOSOBA K,MORITA T,ZHANG Y,et al.High-efficient CRISPR/Cas9-mediated gene targeting to establish cell models of ciliopathies[J].Methods in Cell Biology,2023,175:85-95. [18] GUO T,FENG Y L,XIAO J J,et al.Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing[J].Genome Biology,2018,19(1):170. [19] LIAO H Y,WU J H,VANDUSEN N J,et al.CRISPR-Cas9-mediated homology-directed repair for precise gene editing[J].Molecular Therapy Nucleic Acids,2024,35(4):102344. [20] LEUNG T H,TANG H W,SIU M K,et al.CD71+ population enriched by HPV-E6 protein promotes cancer aggressiveness and radioresistance in cervical cancer cells[J].Molecular Cancer Research,2019,17(9):1867-1880. [21] 魏迎辉,刘志国,徐奎,等.CD163双等位基因编辑猪的制备及传代[J].中国农业科学,2018,51(4):770-777. WEI Y H,LIU Z G,XU K,et al.Generation and propagation of cluster of differentiation 163 biallelic gene editing pigs[J].Scientia Agricultura Sinica,2018,51(4):770-777.(in Chinese) [22] ZHOU X Q,XIN J G,FAN N N,et al.Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J].Cellular and Molecular Life Sciences,2015,72(6):1175-1184. [23] LI Z Y,CHEN Y Y,LI L,et al.Different infectivity of Swine enteric coronaviruses in cells of various species[J].Pathogens,2024,13(2):174. [24] ZHU X Y,LIU S D,WANG X L,et al.Contribution of porcine aminopeptidase N to Porcine deltacoronavirus infection[J].Emerging Microbes & Infections,2018,7(1):65. [25] JAVAID D,GANIE S Y,HAJAM Y A,et al.CRISPR/Cas9 system:A reliable and facile genome editing tool in modern biology[J].Molecular Biology Reports,2022,49(12):12133-12150. [26] WAGNER D L,AMINI L,WENDERING D J,et al.High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population[J].Nature Medicine,2019,25(2):242-248. [27] MA S,WANG F Y,ZHANG X J,et al.Repurposing endogenous type Ⅱ CRISPR-Cas9 system for genome editing in Streptococcus thermophilus[J].Biotechnology Bioengineering,2024,121(2):749-756. [28] HOU Z G,ZHANG Y,PROPSON N E,et al.Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(39):15644-15649. [29] ANZALONE A V,RANDOLPH P B,DAVIS J R,et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature,2019,576(7785):149-157. [30] ARROYO-OLARTE R D,BRAVO RODRÍGUEZ R,MORALES-RÍOS E.Genome editing in bacteria:CRISPR-Cas and beyond[J].Microorganisms,2021,9(4):844. [31] GOLDBERG G W,SPENCER J M,GIGANTI D O,et al.Engineered dual selection for directed evolution of SpCas9 PAM specificity[J].Nature Communications,2021,12(1):349. [32] GALLI M,MARTINY E,IMANI J,et al.CRISPR/SpCas9-mediated double knockout of barley microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity,transcriptional gene silencing and plant growth[J].Plant Biotechnology Journal,2022,20(1):89-102. [33] YIN D,LING S K,WANG D W,et al.Targeting Herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice[J].Nature Biotechnology,2021,39(5):567-577. [34] NISHIYAMA T,ZHANG Y,CUI M,et al.Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy[J].Science Translational Medicine,2022,14(672):eade1633. [35] ZHANG J P,LI X L,NEISES A,et al.Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency[J].Scientific Reports,2016,6:28566. [36] LIU X J,YANG J T,SONG Y Y,et al.Effects of sgRNA length and number on gene editing efficiency and predicted mutations generated in rice[J].The Crop Journal,2022,10(2):577-581. [37] DOENCH J G,FUSI N,SULLENDER M,et al.Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J].Nature Biotechnology,2016,34(2):184-191. [38] PONTA S,BONATO A,NEIDENBACH P,et al.Streamlined,single-step non-viral CRISPR-Cas9 knockout strategy enhances gene editing efficiency in primary human chondrocyte populations[J].Arthritis Research & Therapy,2024,26(1):66. [39] ZHANG J Y,ZHANG Y,KHANAL S,et al.Synthetic gRNA/Cas9 ribonucleoprotein targeting HBV DNA inhibits viral replication[J].Journal of Medical Virology,2023,95(7):e28952. [40] NAKAYAMA A,SATO M,SHINOHARA M,et al.Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection system[J].Cloning and Stem Cells,2007,9(4):523-534. [41] 车晶晶,徐奎,张秀玲,等.基于CRISPR/Cas9技术的Wip1基因敲除ST细胞的建立[J].畜牧兽医学报,2021,52(10):2814-2821. CHE J J,XU K,ZHANG X L,et al.Establishment of Wip1-knockout ST cells mediated by CRISPR/Cas9 system[J].Acta Veterinaria et Zootechnica Sinica,2021,52(10):2814-2821.(in Chinese) [42] 董泽霞,林鑫,周期律,等.CD163基因敲除iPAMs的构建及其感染PRRSV的特征分析[J].中国畜牧兽医,2024,51(8):3471-3483. DONG Z X,LIN X,ZHOU Q L,et al.Construction and PRRSV infection characteristic analysis of CD163 gene knockout iPAMs[J].China Animal Husbandry & Veterinary Medicine,2024,51(8):3471-3483.(in Chinese) [43] 徐长江,王晓朋,徐奎,等.利用CRISPR/Cas9编辑系统构建pAPN基因敲除的IPI-2I细胞系[J].中国畜牧兽医,2021,48(7):2282-2290. XU C J,WANG X P,XU K,et al.Establishment of pAPN gene knockout IPI-2I cell lines mediated by CRISPR/Cas9 system[J].China Animal Husbandry & Veterinary Medicine,2021,48(7):2282-2290.(in Chinese) [44] ZHANG L,WANG Y Z,LI T,et al.Target-specific mutations efficiency at multiple loci of CRISPR/Cas9 system using one sgRNA in soybean[J].Transgenic Research,2021,30(1):51-62. [45] CHUNG P J,CHUNG H Y,OH N,et al.Efficiency of recombinant CRISPR/rCas9-mediated miRNA gene editing in rice[J].International Journal Molecular Sciences,2020,21(24):9606. [46] LOPES R,PRASAD M K.Beyond the promise:Evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics[J].Frontiers in Bioengineering and Biotechnology,2023,11:1339189. |