中国畜牧兽医 ›› 2025, Vol. 52 ›› Issue (8): 3672-3682.doi: 10.16431/j.cnki.1671-7236.2025.08.016
• 营养与饲料 • 上一篇
王正兴, 虎喜敏, 罗仍卓么, 王兴平
收稿日期:
2024-11-26
发布日期:
2025-08-02
通讯作者:
王兴平
E-mail:wxp@nxu.edu.cn
作者简介:
王正兴,E-mail:15595422005@163.com。
基金资助:
WANG Zhengxing, HU Ximin, LUORENG Zhuoma, WANG Xingping
Received:
2024-11-26
Published:
2025-08-02
摘要: Omega-3脂肪酸是一类在自然界中广泛存在的多不饱和脂肪酸,是细胞膜的重要组成部分,主要来源于一些海洋鱼类及亚麻籽等植物种子。Omega-3脂肪酸能够改变细胞膜脂质的组成,调节类花生酸生物合成,调控基因表达和细胞信号级联,对动物机体健康产生积极影响。在奶牛饲粮中添加适量的Omega-3脂肪酸具有显著益处,可有效提高奶牛免疫力,降低乳房炎和繁殖疾病的发病率,同时提高奶牛的繁殖性能。此外,Omega-3脂肪酸还能通过优化瘤胃微生物菌群,促进营养物质的消化吸收,进而提高奶牛的产奶量和乳品质。文章综述了Omega-3脂肪酸的来源、体内转化过程,并阐明了其对奶牛机体免疫、乳房炎、繁殖性能和产奶性能的调节作用,以期为Omega-3脂肪酸作为饲粮添加剂在奶牛养殖中的研究及应用提供参考。
中图分类号:
王正兴, 虎喜敏, 罗仍卓么, 王兴平. Omega-3脂肪酸对奶牛乳房炎、繁殖性能和产奶性能的调节作用[J]. 中国畜牧兽医, 2025, 52(8): 3672-3682.
WANG Zhengxing, HU Ximin, LUORENG Zhuoma, WANG Xingping. Regulatory Effects of Omega-3 Fatty Acids on Mastitis, Reproductive Performance and Milk Production Performance in Dairy Cows[J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(8): 3672-3682.
[1] WELTY F K.Omega-3 fatty acids and cognitive function[J].Current Opinion in Lipidology,2023,34(1):12-21. [2] DOS SANTOS NETO J M,WORDEN L C,BOERMAN J P,et al.Long-term effects of abomasal infusion of linoleic and linolenic acids on the enrichment of n-6 and n-3 fatty acids into plasma lipid fractions of lactating cows[J].Journal of Dairy Science,2024,107(10):7996-8008. [3] URRUTIA N L,BALDIN M,EGOLF S R,et al.Kinetics of omega-3 fatty acid transfer to milk differs between fatty acids and stage of lactation in dairy cows[J].Prostaglandins,Leukotrienes,and Essential Fatty Acids,2023,192:102573. [4] DIRDENDH E,GHAFFARI J.Effects of feeding a source of omega-3 fatty acid during the early postpartum period on the endocannabinoid system in the bovine endometrium[J].Theriogenology,2018,121:141-146. [5] SALMAN H B,SALMAN M A,YILDIZ A E,et al.The effect of omega-3 fatty acid supplementation on weight loss and cognitive function in overweight or obese individuals on weight-loss diet[J]. Nutricion Hospitalaria,2022,39(4):803-813. [6] FABJANOWSKA J,KOWALCZUK-VASILEV E,KLEBANIUK R,et al.n-3 polyunsaturated fatty acids as a nutritional support of the reproductive and immune system of cattle—A review[J].Animals (Basel),2023,13(22):3589. [7] DI MEO M C,SALZANO A,ZOTTI T,et al.Plasma fatty acid profile in Italian Holstein-friesian dairy cows supplemented with natural polyphenols from the olive plant Olea europaea L.[J].Veterinary and Animal Science,2023,21,100298. [8] SHAHIDI F,AMBIGAIPALAN P.Omega-3 polyunsaturated fatty acids and their health benefits[J].Annual Review of Food Science and Technology,2018,9:345-381. [9] ISHIHARA T,YOSHIDA M,ARITA M.Omega-3 fatty acid-derived mediators that control inflammation and tissue homeostasis[J].International Immunology,2019,31(9):559-567. [10] CHOLEWSKI M,TOMCZYKOWA M,TOMCZYK M.A comprehensive review of chemistry,sources and bioavailability of omega-3 fatty acids[J].Nutrients,2018,10(11):1662. [11] SINGH M.Essential fatty acids,DHA and human brain[J].Indian Journal of Pediatrics,2005,72:239-242. [12] DOUGHMAN S D,KRUPANIDHI S,SANJEEVI C B.Omega-3 fatty acids for nutrition and medicine:Considering microalgae oil as a vegetarian source of EPA and DHA[J].Current Diabetes Reviews,2007,3(3):198-203. [13] SAINI R K,KEUM Y S.Omega-3 and omega-6 polyunsaturated fatty acids:Dietary sources,metabolism,and significance—A review[J]. Life Sciences,2018,203:255-267. [14] BHATT D L,BUDOFF M J,MASON R P.A revolution in omega-3 fatty acid research[J].Journal of the American College of Cardiology,2020,76(18):2098-2101. [15] KANNAN N,RAO A S,NAIR A.Microbial production of omega-3 fatty acids:An overview[J].Journal of Applied Microbiology,2021,131(5):2114-2130. [16] CANCINO-PADILLA N,GAJARDO F,NEVES A L A,et al.Influence of dietary oils rich in omega-6 or omega-3 fatty acids on rumen microbiome of dairy cows[J].Translational Animal Science,2023,7(1):74. [17] THEURER M L,BLOCK E,SANCHEZ W K,et al.Calcium salts of polyunsaturated fatty acids deliver more essential fatty acids to the lactating dairy cow[J].Journal of Dairy Science,2009,92(5):2051-2056. [18] CHERFAOUI M,DURAND D,BONNET M,et al.Expression of enzymes and transcription factors involved in n-3 long chain PUFA biosynthesis in Limousin bull tissues[J].Lipids,2012,47(4):391-401. [19] TORAL P G,HERVAS G,LESKINEN H,et al.In vitro ruminal biohydrogenation of eicosapentaenoic (EPA),docosapentaenoic (DPA),and docosahexaenoic acid (DHA) in cows and ewes:Intermediate metabolites and pathways[J]. Journal of Dairy Science, 2018,101(7):6109-6121. [20] PI Y,GAO S T,MA L,et al.Effectiveness of rubber seed oil and flaxseed oil to enhance the alpha-linolenic acid content in milk from dairy cows[J].Journal of Dairy Science,2016,99(7):5719-5730. [21] SUN X,HOU Y,WANG Y,et al.The blood immune cell count,immunoglobulin,inflammatory factor,and milk trace element in transition cows and calves were altered by increasing the dietary n-3 or n-6 polyunsaturated fatty acid levels[J]. Frontiers in Immunology,2022,13:897660. [22] FU Y,WANG Y,GAO H,et al.Associations among dietary omega-3 polyunsaturated fatty acids,mediators inflamm[J].Mediators of Inflammation, 2021,2021:8879227. [23] SPITALNIAK-BAJERSKA K,SZUMNY A,POGODA-SEWERNIAK K,et al.Effects of n-3 fatty acids on growth,antioxidant status,and immunity of preweaned dairy calves[J]. Journal of Dairy Science,2020,103(3):2864-2876. [24] RODRIGUES F G,CAMPOS J B,SILVA G D,et al.Endoscopic ultrasound in the diagnosis of foreign bodies of the colon and rectum[J].Revista da Associacao Medica Brasileira (1992),2016,62(9):818-821. [25] DASILVA G,MEDINA I.Lipidomic methodologies for biomarkers of chronic inflammation in nutritional research:Omega-3 and omega-6 lipid mediators[J].Free Radical Biology & Medicine,2019,144:90-109. [26] PATE J L.Roadmap to pregnancy during the period of maternal recognition in the cow:Changes within the corpus luteum associated with luteal rescue[J].Theriogenology,2020,150:294-301. [27] WANG G Q,ZHENG H Y,HOU J L,et al.The role of leukotriene B4 in cow metritis[J].Journal of Veterinary Research,2023,67(1):99-104. [28] SHIRAISHI M,OGAWA H,IKEDA M,et al.Platelet dysfunction in Chediak-Higashi syndrome-affected cattle[J]. The Journal of Veterinary Medical Science,2002,64(9):751-760. [29] ALBARDAN L,PLATAT C,KALUPAHANA N S.Role of omega-3 fatty acids in improving metabolic dysfunctions in polycystic ovary syndrome[J].Nutrients,2024,16(17):2961. [30] OZERSKAIA I V,KHACHATRYAN L G,KOLOSOVA N G,et al.The role of ω-3 polyunsaturated fatty acids in child development[J].Voprosy Pitaniia,2024,93(2):6-18. [31] SORENSEN L S,THORLACIUS-USSING O,RASMUSSEN H H,et al.Effects of perioperative supplementation with omega-3 fatty acids on leukotriene B4 and leukotriene B5 production by stimulated neutrophils in patients with colorectal cancer:A randomized,placebo-controlled intervention trial[J].Nutrients,2014,6(10):4043-4057. [32] OLIVEIRA M X S,PALMA A S V,REIS B R,et al.Inclusion of soybean and linseed oils in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet[J].PLoS One,2021,16(2):e0246357. [33] AL-MADHAGY S,ASHMAWY N S,MAMDOUH A,et al.A comprehensive review of the health benefits of flaxseed oil in relation to its chemical composition and comparison with other omega-3-rich oils[J].European Journal of Medical Research,2023,28(1):240. [34] GANDRA J R,BARLETTA R V,MINGOTI R D,et al.Effects of whole flaxseed,raw soybeans,and calcium salts of fatty acids on measures of cellular immune function of transition dairy cows[J]. Journal of Dairy Science,2016,99(6):4590-4606. [35] GUTIERREZ S,SVAHN S L,JOHANSSON M E.Effects of omega-3 fatty acids on immune cells[J].International Journal of Molecular Sciences,2019,20(20):5028. [36] KUROKAWA Y,OKITA M,KUBOTA H,et al.Effect of relationships among clinical mastitis incidence,reproductive performance,and culling rate on the lifetime of dairy cows at Hiroshima University Farm[J].Animal Science Journal,2021,92(1):e13591. [37] ZARRIN M,WELLNITZ O,VAN DORLAND H A,et al.Hyperketonemia during lipopolysaccharide-induced mastitis affects systemic and local intramammary metabolism in dairy cows[J].Journal of Dairy Science,2014,97(6):3531-3541. [38] 李彦霞,王晋鹏,冯芬,等.大肠杆菌型奶牛乳房炎对产奶性状相关基因表达的影响[J].生物技术通报,2023,39(2):274-282. LI Y X,WANG J P,FENG F,et al.Effect of escherichia coli mastitis on the expression of genes related to milk production traits in dairy cows[J].Biotechnology Bulletin,2023,39(2):274-282.(in Chinese) [39] ZEMANOVA M,LANGOVA L,NOVOTNA I,et al.Immune mechanisms,resistance genes,and their roles in the prevention of mastitis in dairy cows[J]. Archives Animal Breeding,2022,65(4):371-384. [40] VRINGER E,HEILIG R,RILEY J S,et al.Mitochondrial outer membrane integrity regulates a ubiquitin-dependent and NF-kappaB-mediated inflammatory response[J].The EMBO Journal,2024,43(6):904-930. [41] LIU J,GAO Y,ZHANG X,et al.Transcriptome sequencing analysis of bovine mammary epithelial cells induced by lipopolysaccharide[J].Animal Biotechnology,2024,35(1):2290527. [42] AKHTAR M,GUO S,GUO Y F,et al.Upregulated-gene expression of pro-inflammatory cytokines (TNF-alpha,IL-1beta and IL-6) via TLRs following NF-kappaB and MAPKs in bovine mastitis[J].Acta Tropica,2020,207:105458. [43] BOCHNIARZ M,HAHAJ-SIEMBIDA A,KRAJEWSKA-WEDZINA M,et al.Cytokine inflammatory response in dairy cows with mastitis caused by Streptococcus agalactiae[J].Journal of Veterinary Research,2024,68(1):115-121. [44] WANG J,GUO C,WEI Z,et al.Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-kappaB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells[J].Journal of Dairy Science,2016,99(4):3016-3022. [45] CHITRANJALI T,ANOOP C P,MURALEEDHARA K G.Omega-3 fatty acid concentrate from dunaliella salina possesses anti-inflammatory properties including blockade of NF-kappaB nuclear translocation[J].Immunopharmacol Immunotoxicol,2015,37(1):81-89. [46] CALDER P C.Long-chain fatty acids and inflammation[J].The Proceedings of the Nutrition Society,2012,71(2):284-289. [47] XU T,LIU R,LU X,et al.Lycium barbarum polysaccharides alleviate LPS-induced inflammatory responses through PPARgamma/MAPK/NF-kappaB pathway in bovine mammary epithelial cells[J].Journal of Animal Science,2022,100(1):345. [48] HE X,LIU W,SHI M,et al.Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARgamma/NF-kappaB pathways in primary bovine mammary epithelial cells[J].Research in Veterinary Science,2017,112:7-12. [49] GRECO L F,NEVES N J,PEDRICO A,et al.Effects of altering the ratio of dietary n-6 to n-3 fatty acids on performance and inflammatory responses to a lipopolysaccharide challenge in lactating Holstein cows[J].Journal of Dairy Science,2015,98(1):602-617. [50] SUN X,TANG Y,JIANG C,et al.Oxidative stress,NF-kappaB signaling,NLRP3 inflammasome,and caspase apoptotic pathways are activated in mammary gland of ketotic Holstein cows[J]. Journal of Dairy Science,2021,104(1):849-861. [51] KHAN M Z,MA Y,XIAO J,et al.Role of selenium and vitamins E and B9 in the alleviation of bovine mastitis during the periparturient period[J].Antioxidants (Basel),2022,11(4):657. [52] MU J,LEI L,ZHENG Y,et al.Oxidative stress induced by selenium deficiency contributes to inflammation,apoptosis and necroptosis in the lungs of calves[J].Antioxidants (Basel),2023,12(4):796. [53] CHEN M,XI Y,CHEN K,et al.Upregulation sestrin2 protects against hydrogen peroxide-induced oxidative damage bovine mammary epithelial cells via a Keap1-Nrf2/ARE pathway[J].Journal of Cellular Physiology,2021,236(1):392-404. [54] 王倩雯.n-3多不饱和脂肪酸对奶牛乳腺细胞氧化损伤的保护效果[D].杨凌:西北农林科技大学,2021. WANG Q W.Protective effects of n-3 polyunsaturated fatty acids on oxidative damages to bovine mammary epithelial cell[D].Yangling:Northwest A&F University,2021.(in Chinese) [55] GHOLAMI H,CHAMANI M,TOWHIDI A,et al.Effect of feeding a docosahexaenoic acid-enriched nutriceutical on the quality of fresh and frozen-thawed semen in Holstein bulls[J].Theriogenology,2010,74(9):1548-1558. [56] KIERNAN M,FAHEY A G,FAIR S.The effect of the in vitro supplementation of exogenous long-chain fatty acids on bovine sperm cell function[J].Reproduction,Fertility,and Development,2013,25(6):947-954. [57] KHOSHNIAT M T,TOWHIDI A,REZAYAZDI K,et al.Dietary omega-3 fatty acids from linseed oil improve quality of post-thaw but not fresh sperm in Holstein bulls[J].Reproductive Biomedicine Online,2020,93:102-108. [58] KHOSHVAGHT A,TOWHIDI A,ZARE-SHAHNEH A,et al.Dietary n-3 PUFAs improve fresh and post-thaw semen quality in Holstein bulls via alteration of sperm fatty acid composition[J].Theriogenology,2016,85(5):807-812. [59] MCART J,NYDAM D V,OETZEL G R.Epidemiology of subclinical ketosis in early lactation dairy cattle[J]. Journal of Dairy Science,2012,95(9):5056-5066. [60] HUTCHINSON I A,HENNESSY A A,WATERS S M,et al.Effect of supplementation with different fat sources on the mechanisms involved in reproductive performance in lactating dairy cattle[J].Theriogenology,2012,78(1):12-27. [61] OSEIKRIA M,ELIS S,MAILLARD V,et al.n-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle[J].Theriogenology,2016,85(9):1625-1634. [62] GULLIVER C E,FRIEND M A,KING B J,et al.The role of omega-3 polyunsaturated fatty acids in reproduction of sheep and cattle[J].Animal Reproduction Science,2012,131(1-2):9-22. [63] SAHMI F,SAHMI M,GEVRY N,et al.A putative protein-RNA complex regulates posttranscriptional processing of cytochrome P450 aromatase (CYP19A1) in bovine granulosa cells[J].Molecular Reproduction and Development,2019,86(12):1901-1908. [64] MAILLARD V,DESMARCHAIS A,DURCIN M,et al.Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells[J].Reproductive Biology and Endocrinology,2018,16(1):40. [65] CHENG Z,ROBINSON R S,PUSHPAKUMARA P G,et al.Effect of dietary polyunsaturated fatty acids on uterine prostaglandin synthesis in the cow[J].The Journal of Endocrinology,2001,171(3):463-473. [66] KRAISOON A,NAVANUKRAW C,INTHAMONEE W,et al.Embryonic development,luteal size and blood flow area,and concentrations of PGF(2alpha) metabolite in dairy cows fed a diet enriched in polysaturated or polyunsaturated fatty acid[J].Animal Reproduction Science,2018,195:291-301. [67] ROBINSON R S,PUSHPAKUMARA P G,CHENG Z,et al.Effects of dietary polyunsaturated fatty acids on ovarian and uterine function in lactating dairy cows[J].Reproduction,2002,124(1):119-131. [68] YENUGANTI V R,VIERGUTZ T,VANSELOW J.Oleic acid induces specific alterations in the morphology,gene expression and steroid hormone production of cultured bovine granulosa cells[J].General and Comparative Endocrinology,2016,232:134-144. [69] VERNUNFT A,LAPP R,VIERGUTZ T,et al.Effects of different cyclooxygenase inhibitors on prostaglandin E2 production,steroidogenesis and ovulation of bovine preovulatory follicles[J].The Journal of Reproduction and Development,2022,68(4):246-253. [70] KANNAN N,RAO A S,NAIR A.Microbial production of omega-3 fatty acids:An overview[J].Antimicrobial betalains[J] .Journal of Applied Microbiology,2021,131(5):2114-2130. [71] PEREIRA G,SIMOES P,BEXIGA R,et al.Effects of feeding rumen-protected linseed fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations and metabolic and reproductive parameters[J].Journal of Dairy Science,2022,105(1):361-374. [72] WANG L,ZHANG G,LI Y,et al.Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen[J].Animals (Basel),2020,10(2):223. [73] JEONG H Y,MOON Y S,CHO K K.ω-6 and ω-3 polyunsaturated fatty acids:Inflammation,obesity and foods of animal resources[J].Food Science of Animal Resources,2024,44(5):988-1010. [74] MEIGNAN T,LECHARTIER C,CHESNEAU G,et al.Effects of feeding extruded linseed on production performance and milk fatty acid profile in dairy cows:A Meta-analysis[J].Journal of Dairy Science,2017,100(6):4394-4408. [75] KOSTOVSKA R,DROUIN G,SALAS J J,et al.Multispecies pasture diet and cow breed affect the functional lipid profile of milk across lactation in a spring-calving dairy system[J].Journal of Dairy Science,2025,108(2):1261-1284. [76] SILVA L G,BUNKERS J,PAULA E M,et al.Effects of flaxseed and chia seed on ruminal fermentation,nutrient digestibility,and long-chain fatty acid flow in a dual-flow continuous culture system[J].Journal of Animal Science,2016,94(4):1600-1609. [77] ZACHUT M,ARIELI A,LEHRER H,et al.Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma,adipose tissue,and milk fat[J].Journal of Dairy Science,2010,93(12):5877-5889. [78] WELTER K C,MARTINS C M,DE PALMA A S,et al.Canola oil in lactating dairy cow diets reduces milk saturated fatty acids and improves its omega-3 and oleic fatty acid content[J].PLoS One,2016,11(3):e0151876. [79] 黄国欣.亚麻籽对奶牛生产性能、生乳脂肪酸组成和风味物质的影响研究[D].哈尔滨:东北农业大学,2022. HUANG G X.Effects of flaxseed on performance,fatty acid composition and flavor of raw milk in dairy cows[D].Harbin:Northeast Agricultural University,2022.(in Chinese) [80] BURDICK M,ZHOU M,GUAN L L,et al.Effects of medium-chain fatty acid supplementation on performance and rumen fermentation of lactating Holstein dairy cows[J].Animal,2022,16(4):100491. [81] GONTHIER C,MUSTAFA A F,OUELLET D R,et al.Feeding micronized and extruded flaxseed to dairy cows:Effects on blood parameters and milk fatty acid composition[J].Journal of Dairy Science,2005,88(2):748-756. [82] SOITA H W,MEIER J A,FEHR M,et al.Effects of flaxseed supplementation on milk production,milk fatty acid composition and nutrient utilization by lactating dairy cows[J].Archiv fur Tierernahrung,2003,57(2):107-116. |
[1] | 庞小童, 匡宇, 耿明阳, 南珊珊, 马小雪, 魏欣, 谢松, 聂存喜. 复合酶制剂对围产期奶牛养分消化率、乳成分、瘤胃发酵参数及菌群的影响[J]. 中国畜牧兽医, 2025, 52(8): 3607-3619. |
[2] | 尚恺圆, 官久强, 安添午, 赵洪文, 柏琴, 张明, 吴伟生, 李华德, 沙泉, 江明锋, 张翔飞, 罗晓林. 基于转录组学解析围产期营养调控对牦牛母体营养代谢与繁殖的影响机制[J]. 中国畜牧兽医, 2025, 52(7): 3031-3046. |
[3] | 赵竟宏, 马慧, 刘锦涛, 苗人方, 刘红志, 刘顿成, 曲永利. 补光对妊娠后期荷斯坦育成奶牛血液内激素浓度及昼夜节律变化的影响[J]. 中国畜牧兽医, 2025, 52(7): 3178-3189. |
[4] | 李托, 杜媛媛, 屈雷, 李陇平. 奶牛乳房炎源金黄色葡萄球菌特异性噬菌体的分离鉴定及生物学特性研究[J]. 中国畜牧兽医, 2025, 52(6): 2800-2808. |
[5] | 仝静迪, 李霄韩, 任美奕, 宋德源, 赵岩, 宋金尚, 苏娅澜, 温向福, 程佳, 刘明超. 奶牛场明串珠菌的分离鉴定及其生物学特性分析[J]. 中国畜牧兽医, 2025, 52(6): 2874-2883. |
[6] | 刘志旭, 韩文昌, 李彦芹, 张利文, 刘燕, 苑昭伟, 李建斌, 王晓, 曹荣峰. 山东地区隐性乳房炎牛乳中β-内酰胺酶blaZ基因与微生物相关性研究[J]. 中国畜牧兽医, 2025, 52(5): 2318-2327. |
[7] | 韩雨润, 史远刚, 康晓龙. 奶牛反刍行为影响因素及其智能化监测方法的应用[J]. 中国畜牧兽医, 2025, 52(4): 1554-1566. |
[8] | 陶思名, 梁慧, 颜畅, 龙润泽, 徐睿卿, 李子胥, 吴英杰, 刘宁, 秦应和. 饲粮中添加绿原酸对母兔繁殖性能及其仔兔生长性能的影响[J]. 中国畜牧兽医, 2025, 52(3): 1080-1088. |
[9] | 李扬, 徐晶晶, 张小玉, 李娜娜, 余星雨, 冷青文, 李彦芳, 屈勇刚. 新疆某规模化奶牛场乳源金黄色葡萄球菌的分离鉴定、耐药分析及毒力基因检测[J]. 中国畜牧兽医, 2025, 52(3): 1370-1382. |
[10] | 刘拓, 成志强, 成喆, 臧长江, 南冰禹, 李韬, 李晓斌, 李云梦, 仇娅琪, 闫法钰, 吴海荣, 院东, 王永力, 刘文涛. 烟酰胺对泌乳期奶牛瘤胃发酵参数、微生物蛋白产量和微生物区系的影响[J]. 中国畜牧兽医, 2025, 52(2): 593-604. |
[11] | 任美奕, 梁洪秀, 李璨, 冯鸣鹊, 谢琴娜, 宋德源, 刘明超, 高健, 程佳. 基于不同ST型肺炎克雷伯菌感染的小鼠乳腺炎模型的差异分析[J]. 中国畜牧兽医, 2025, 52(1): 422-431. |
[12] | 马洪鹏, 邵伟, 娄肖肖, 高姣姣, 马宪兰, 陈贺, 郑楠, 赵艳坤. 新疆部分地区奶牛源大肠杆菌的流行性与耐药性分析[J]. 中国畜牧兽医, 2025, 52(1): 470-480. |
[13] | 姚伟佳, 罗春海, 刘佳金, 王薇, 李丹阳, 刘炳琦, 付世新. 过表达miRNA-424-5p靶向AKT3对奶牛子宫内膜上皮细胞凋亡的影响[J]. 中国畜牧兽医, 2024, 51(8): 3635-3642. |
[14] | 何兴丽, 周佩瑶, 张小雪, 牟泉宙, 李杨, 王昭元, 刘鹏, 王梓, 宋杨阳, 李晓琳, 沈冰蕾. 金黄色葡萄球菌和表皮葡萄球菌对奶牛中性粒细胞炎性因子分泌的影响[J]. 中国畜牧兽医, 2024, 51(8): 3676-3686. |
[15] | 黄越川, 张海亮, 徐伟, 韩丽云, 周佳敏, 马丽琴, 温万, 王雅春. 宁夏地区奶牛体型外貌性状遗传参数估计[J]. 中国畜牧兽医, 2024, 51(7): 2908-2922. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||