中国畜牧兽医 ›› 2021, Vol. 48 ›› Issue (3): 882-892.doi: 10.16431/j.cnki.1671-7236.2021.03.012
郭旭, 张科, 陈玉林, 杨雨鑫
收稿日期:
2020-08-31
出版日期:
2021-03-20
发布日期:
2021-03-18
通讯作者:
杨雨鑫
E-mail:yangyuxin2002@126.com
作者简介:
郭旭(1999-),女,山东滕州人,本科生,研究方向:反刍动物营养调控,E-mail:gxdwyyx2027@163.com
基金资助:
GUO Xu, ZHANG Ke, CHEN Yulin, YANG Yuxin
Received:
2020-08-31
Online:
2021-03-20
Published:
2021-03-18
摘要: 反刍动物是畜牧业中的重要支柱,研究瘤胃微生物在幼龄反刍动物上的定植过程,并利用其中的定植规律采取科学的早期调控措施,以此提高反刍动物的生产效率,对于维持畜牧业高效、健康、可持续发展具有重要意义。瘤胃微生物的定植过程伴随着幼龄反刍动物瘤胃的发育和饮食结构的巨大变化。在幼龄反刍动物哺乳时,瘤胃由于食管沟反射的存在而不发挥功能,发育缓慢,此时只有部分功能菌群逐渐定植;随着日龄的增长,幼龄反刍动物大量摄入固体饲料,瘤胃在固体饲料的刺激下迅速发育直至成熟,此时大量菌群定植,瘤胃发酵逐渐活跃,且优势菌及其丰度与前期相比发生较大变化。同时,大量瘤胃发酵产物的积累又进一步刺激了瘤胃的发育。反刍动物在幼龄阶段经历了从非反刍到反刍的生理过渡,是其最敏感和可塑性最强的时期,可以在此阶段对反刍动物瘤胃微生物采取人工调控措施,以保证机体的健康和后续生长发育。作者综述了反刍动物瘤胃早期发育过程、瘤胃内微生物的种类、来源及其在幼龄反刍动物瘤胃中的定植过程,阐明瘤胃微生物在反刍动物消化代谢、生产性能以及畜体健康方面的重要功能,并归纳了常用的瘤胃微生物调控技术,从而为生产中对幼龄反刍动物的饲养管理、营养调控提供参考。
中图分类号:
郭旭, 张科, 陈玉林, 杨雨鑫. 幼龄反刍动物瘤胃微生物的定植过程与调控措施[J]. 中国畜牧兽医, 2021, 48(3): 882-892.
GUO Xu, ZHANG Ke, CHEN Yulin, YANG Yuxin. The Colonization Process and Regulation Measures of Rumen Microorganisms in Young Ruminants[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(3): 882-892.
[1] HUNATE R E.The Rumen and Its Microbes[M].Amsterdam:Elsevier,1966. [2] CASTILLO-GONZÁLEZ A R,BURROLA-BARRAZA M E,DOMÍNGUEZ-VIVEROS J,et al.Rumen microorganisms and fermentation[J].Archivos de Medicina Veterinaria,2014,46:349-361. [3] ZHANG K,LI B B,GUO M M,et al.Maturation of the goat rumen microbiota involves three stages of microbial colonization[J].Animals,2019,9(12):1028. [4] REY M,ENJALBERT F,COMBES S,et al.Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential[J].Journal of Applied Microbiology,2014,116(2):245-257. [5] UPPOOR K,MORAN J.Rearing young ruminants on milk replacers and starter feeds[J].Food and Agriculture Organization of the United Nations,2011,13:82. [6] YEOMAN C J,ISHAQ S L,BICHI E,et al.Biogeographical differences in the influence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract[J].Scientific Reports,2018,8(1):3197. [7] NISHIHARA K,YUTAKA S,DAHYE K,et al.Growth of rumen papillae in weaned calves is associated with lower expression of insulin-like growth factor-binding proteins 2,3,and 6[J].Animal Science Journal,2019,90(9):1287-1292. [8] SANDER E G,WARNER R G,HARRISON H N,et al.The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf[J].Journal of Dairy Science,1959,42(9):1600-1605. [9] SUN Y Y,LI J,MENG Q S,et al.Effects of butyric acid supplementation of acidified milk on digestive function and weaning stress of cattle calves[J].Livestock Science,2019,225:78-84. [10] SOOMRO J,LU Z Y,GUI H B,et al.Synchronous and time-dependent expression of cyclins,cyclin-dependant kinases,and apoptotic genes in the rumen epithelia of butyrate-infused goats[J].Frontiers in Physiology,2018,9:496. [11] GUILLOTEAU P,MARTIN L,EECKHAUT V,et al.From the gut to the peripheral tissues:The multiple effects of butyrate[J].Nutrition Research Reviews,2010,23(2):366-384. [12] GUZMAN C E,BEREZA-MALCOLM L T,GROEF D B,et al.Presence of selected methanogens,fibrolytic bacteria,and proteobacteria in the gastrointestinal tract of neonatal dairy calves from birth to 72 hours[J].PLoS One,2015,10(7):e133048. [13] ISHAQ S L,BICHI E,OLIVO S K,et al.Influence of colostrum on the microbiological diversity of the developing bovine intestinal tract[J].Journal of Animal Science,2016,94(5):739. [14] ABECIA L,RAMOS-MORALES E,MARTÍNEZ-FERNANDEZ G,et al.Feeding management in early life influences microbial colonisation and fermentation in the rumen of newborn goat kids[J].Animal Production Science,2014,54(9):1449-1454. [15] ABECIA L,JIMÉNEZ E,MARTINEZ-FERNANDEZ G,et al.Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats[J].PLoS One,2017,12(8):e182235. [16] ALEXANDRIA-N A,DIOMEL M,DAVIS-RICHARDSON A G,et al.Meconium microbiome analysis identifies bacteria correlated with premature birth[J].PLoS One,2014,9(3):e90784. [17] WEIMER P J,STEVENSON D M,MANTOVANI H C,et al.Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents[J].Journal of Dairy Science,2010,93(12):5902-5912. [18] WALLACE R J,SASSON G,GARNSWORTHY P C,et al.A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions[J].Science Advances,2019,5(7):eaav8391. [19] OZUTSUMI Y,KIYOSHI T,AKIO T,et al.The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries[J].Bioscience,Biotechnology,and Biochemistry,2005,69(3):499-506. [20] O'HARA E,NEVES L A,SONG Y,et al.The role of the gut microbiome in cattle production and health:Driver or passenger[J].Annual Review of Animal Biosciences,2020,8(1):199-220. [21] MCALLISTER T A,RODE L M,MAJOR D J,et al.Effect of ruminal microbial colonization on cereal grain digestion[J].Canadian Journal of Animal Science,1990,70(2):571-579. [22] DEUSCH S,CAMARINHA-SILVA A,CONRAD J,et al.A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments[J].Frontiers in Microbiology,2017,8:1605. [23] FLINT H J,BAYER E A,RINCON M T,et al.Polysaccharide utilization by gut bacteria:Potential for new insights from genomic analysis[J].Nature Reviews Microbiology,2008,6(2):121-131. [24] MILLEN D D,MARIO-DE-BENI A,RODRIGO-DIAS-LAURITANO P.Rumenology[M].Berlin:Springer,2016. [25] MAO S Y,ZHANG M L,LIU J H,et al.Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle:Membership and potential function[J].Scientific Reports,2015,5:16116. [26] SBARDELLATI D L,FISCHER A,COX M S,et al.The bovine epimural microbiota displays compositional and structural heterogeneity across different ruminal locations[J].Journal of Dairy Science,2020,103(4):3636-3647. [27] BRYANT M P,NOLA S.The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen[J].Journal of Bacteriology,1956,72(1):16-21. [28] MARTINY A C,TRESEDER K,PUSCH G.Phylogenetic conservatism of functional traits in microorganisms[J].The ISME Journal,2013,7(4):830-838. [29] WALLACE R J,ROOKE J A,MCKAIN N,et al.The rumen microbial metagenome associated with high methane production in cattle[J].BMC Genomics,2015,16(1):839. [30] LI R W,CONNOR E E,LI C,et al.Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools[J].Environmental Microbiology,2012,14(1):129-139. [31] RIEU F,FONTY G,GAILLARD B,et al.Electron microscopy study of the bacteria adherent to the rumen wall in young conventional lambs[J].Canadian Journal of Microbiology,1990,36(2):140-144. [32] JAMI E,ISRAEL A,KOTSER A,et al.Exploring the bovine rumen bacterial community from birth to adulthood[J].The ISME Journal,2013,7(6):1069-1079. [33] FONTY G,GOUET P,JOUANY J P,et al.Establishment of the microflora and anaerobic fungi in the rumen of lambs[J].Microbiology,1987,133(7):1835-1843. [34] MINATO H,OTSUKA M,SHIRASAKA S,et al.Colonization of microorganisms in the rumen of young calves[J].The Journal of General and Applied Microbiology,1992,38(5):447-456. [35] KLEIN-JÖBSTL D,SCHORNSTEINER E,MANN E,et al.Pyrosequencing reveals diverse fecal microbiota in Simmental calves during early development[J].Frontiers in Microbiology,2014,5:622. [36] ANDERSON K L,NAGARAJA T G,MORRILL J L,et al.Ruminal microbial development in conventionally or early-weaned calves[J].Journal of Animal Science,1987,64(4):1215-1226. [37] MORVAN B,BONNEMOY F,FONTY G,et al.Quantitative determination of H 2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals[J].Current Microbiology,1996,32(3):129-133. [38] BOND J J,DUNNE J C,KWAN F Y S,et al.Carbohydrate transporting membrane proteins of the rumen bacterium,Butyrivibrio proteoclasticus[J].Journal of Proteomics,2012,75(11):3138-3144. [39] QUIGLEY J D,SCHWAB C G,HYLTON W E.Development of rumen function in calves:Nature of protein reaching the abomasum[J].Journal of Dairy Science,1985,68(3):694-702. [40] WANG L,ZHANG K,ZHANG C G,et al.Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep[J].Scientific Reports,2019,9(1):19620. [41] 郭政宏,周彪,严亨秀.一株藏绵羊源短小芽孢杆菌的分离鉴定及生物学特性研究[J].中国畜牧兽医,2016,43(6):1610-1617. GUO Z H,ZHOU B,YAN H X.Study on the isolation,identification and biological characteristics of a strain of Bacillus pumilus isolated from Tibetan sheep[J].China Animal Husbandry & Veterinary Medicine,2016,43(6):1610-1617.(in Chinese) [42] ZEINELDIN M,BARAKAT R,ELOLIMY A,et al.Synergetic action between the rumen microbiota and bovine health[J].Microbial Pathogenesis,2018,124:106-115. [43] SHEN H,XU Z H,SHEN Z M,et al.The regulation of ruminal short-chain fatty acids on the functions of rumen barriers[J].Frontiers in Physiology,2019,10:1305. [44] ANTONY M.Rumen microbial culture library and in vitro analysis of selected bacterial species on colonization resistance against bovine enteric pathogens[J].Electronic Theses and Dissertations,2019,36(36):81. [45] MALAU-ADULI A E O,BALOGUN R O,OTTO J R,et al.Novel encapsulated calcium butyrate supplement enhances on-farm dairy calf growth performance and body conformation in a pasture-based dairy production system[J].Animals,2020,10(8):1380. [46] KHAFIPOUR E,LI S,TUN H M,et al.Effects of grain feeding on microbiota in the digestive tract of cattle[J].Animal Frontiers,2016,6(2):13-19. [47] HUNGATE R E.The anaerobic mesophilic cellulolytic bacteria[J].Bacteriological Reviews,1950,14(1):1-49. [48] PIMENTEL M F A,PAULA D A J,RIET-CORREA F,et al.Detection and characterization of bovine rumen microorganisms resistant to sodium fluoroacetate[J].Acta Scientiae Veterinariae,2019,47:1627. [49] SEJRSEN K,HVELPLUND T,NIELSEN M O.Ruminant Physiology:Digestion,Metabolism and Impact of Nutrition on Gene Expression,Immunology and Stress[M].Wageningen:Wageningen Academic Publishers,2006. [50] POPE P B,SMITH W,DENMAN S E,et al.Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies[J].Science,2011,333(6042):646-648. [51] DESNOYERS M,GIGER-REVERDIN S,BERTIN G,et al.Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants[J].Journal of Dairy Science,2009,92(4):1620-1632. [52] STANTON C,LEAHY S,KELLY B,et al.Manipulating the rumen microbiome to address challenges facing Australasian dairy farming[J].Animal Production Science,2020,60(1):36-45. [53] 李俊,姜宁,张爱忠.营养调控对羊免疫功能的调节[J].黑龙江畜牧兽医,2018,17:29-32. LI J,JIANG N,ZHANG A Z.Regulation of nutrition on immune function of sheep[J].Heilongjiang Animal Science and Veterinary Medicine,2018,17:29-32.(in Chinese) [54] DIAO Q Y,ZHANG R,TU Y.Current research progresses on calf rearing and nutrition in China[J].Journal of Integrative Agriculture,2017,16(12):2805-2814. [55] SANDERS M E,MERENSTEIN D J,REID G,et al.Probiotics and prebiotics in intestinal health and disease:From biology to the clinic[J].Nature Reviews Gastroenterology & Hepatology,2019,16(10):605-616. [56] RENAUD D L,KELTON D F,WEESE J S,et al.Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves:A randomized clinical trial[J].Journal of Dairy Science,2019,102(5):4498-4505. [57] MA Z Z,CHENG Y Y,WANG S Q,et al.Positive effects of dietary supplementation of three probiotics on milk yield,milk composition and intestinal flora in Sannan dairy goats varied in kind of probiotics[J].Journal of Animal Physiology and Animal Nutrition,2020,104(1):44-55. [58] MOUNTZOURIS K C,TSIRTSIKOS P,KALAMARA E,et al.Evaluation of the efficacy of a probiotic containing Lactobacillus,Bifidobacterium,Enterococcus,and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities[J].Poultry Science,2007,86(2):309-317. [59] GANGADHARAN D,SIVARAMAKRISHNAN S,NAMPOOTHIRI K M,et al.Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens[J].Biore-source Technology,2008,99(11):4597-4602. [60] COMMANE D M,COLETTE-T S,STEFANIA S,et al.Effects of fermentation products of pro-and prebiotics on trans-epithelial electrical resistance in an in vitro model of the colon[J].Nutrition and Cancer,2005,51(1):102-109. [61] CORR S C,LI Y,RIEDEL C U,et al.Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118[J].Proceedings of the National Academy of Sciences,2007,104(18):7617-7621. [62] HUGHES D T,SPERANDIO V.Inter-kingdom signalling:Communication between bacteria and their hosts[J].Nature Reviews Microbiology,2008,6(2):111-120. [63] BORCHERS A T,SELMI C,MEYERS F J,et al.Probiotics and immunity[J].Journal of Gastroenterology,2009,44(1):26-46. [64] JOHNSON-HENRY K C,HAGEN K E,GORDONPOUR M,et al.Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells[J].Cellular Microbiology,2007,9(2):356-367. [65] AYDODU M,KARSLI M.The effects of live yeast culture use in suckling Simmental calves on performance and health[J].Van Veterinary Journal,2020,31(1):1-6. [66] COBELLIS G,TRABALZA-MARINUCCI M,YU Z T.Critical evaluation of essential oils as rumen modifiers in ruminant nutrition:A review[J].Science of the Total Environment,2016,545:556-568. [67] BELANCHE A,NEWBOLD C J,MORGAVI D P,et al.A meta-analysis describing the effects of the essential oils blend agolin ruminant on performance,rumen fermentation and methane emissions in dairy cows[J].Animals,2020,10(4):620. [68] ANDRI F,HUDA A N,MARJUKI M.The use of essential oils as a growth promoter for small ruminants:A systematic review and meta-analysis[J].F1000Research,2020,9(486):486. [69] HART K J,YÁÑEZ-RUIZ D R,DUVAL S M,et al.Plant extracts to manipulate rumen fermentation[J].Animal Feed Science and Technology,2008,147(1-3):8-35. [70] WALLACE R J,MCEWAN N R,MCINTOSH F M,et al.Natural products as manipulators of rumen fermentation[J].Asian-Australasian Journal of Animal Sciences,2002,15(10):1458-1468. [71] LEI Z M,ZHANG K,LI C,et al.Dietary supplementation with essential-oils-cobalt for improving growth performance,meat quality and skin cell capacity of goats[J].Scientific Reports,2018,8(1):11634. [72] LEI Z M,ZHANG K,LI C,et al.Ruminal metagenomic analyses of goat data reveals potential functional microbiota by supplementation with essential oil-cobalt complexes[J].BMC Microbiology,2019,19(1):30. [73] PAN C Y,CHEN J Y,LIN T L,et al. In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes,Candida albicans,and Trichomonas vaginalis[J].Peptides,2009,30(6):1058-1068. [74] REN Z H,YAO R J,LIU Q,et al.Effects of antibacterial peptides on rumen fermentation function and rumen microorganisms in goats[J].PLoS One,2019,14(8):e0221815. [75] JASMIN B H,BOSTON R C,MODESTO R B,et al.Perioperative ruminal pH changes in domestic sheep (Ovis aries) housed in a biomedical research setting[J].Journal of the American Association for Laboratory Animal Science,2011,50(1):27-32. [76] MAEKAWA M,BEAUCHEMIN K A,CHRISTEN-SEN D A.Effect of concentrate level and feeding management on chewing activities,saliva production,and ruminal pH of lactating dairy cows[J].Journal of Dairy Science,2002,85(5):1165-1175. [77] SHEN Y Z,DING L Y,CHEN L M,et al.Feeding corn grain steeped in citric acid modulates rumen fermentation and inflammatory responses in dairy goats[J].Animal,2019,13(2):301-308. [78] GHELLER L S,GHIZZI L G,MARQUES J A,et al.Effects of organic acid-based products added to total mixed ration on performance and ruminal fermentation of dairy cows[J].Animal Feed Science and Technology,2020,261:114406. [79] 张红艳,张强,岳淑宁,等.复合酶在饲料中的应用及研究进展[J].今日畜牧兽医,2008,10:60-61. ZHANG H Y,ZHANG Q,YUE S N,et al.Application and research progress of compound enzyme in feed[J].Today Animal Husbandry and Veterinary Medicine,2008,10:60-61.(in Chinese) [80] IVANOV E,IVANOVA O,TERESHCHENKO V,et al.Sustainable increase of cow milk productivity using components of Siberian forest and alpha-amylase enzyme[J].Kafkas Vniversitesi Veteriner Fakültesi Dergisi,2020,26(5):657-664. [81] ABID K,JABRI J,AMMAR H,et al.Effect of treating olive cake with fibrolytic enzymes on feed intake,digestibility and performance in growing lambs[J].Animal Feed Science and Technology,2020,261:114405. |
[1] | 王茹, 王家豪, 欧靖渝, 汤文慧, 程箫, 王强军, 陈家宏, 张子军, 任春环. 抗氧化剂对反刍动物精液冷冻效果的影响[J]. 中国畜牧兽医, 2025, 52(7): 3242-3255. |
[2] | 周路松, 赵媛媛, 杨宇为, 赵青余, 马青, 汤超华, 张会艳, 张军民, 秦洋, 秦玉昌. 苦豆子和苦豆子生物碱对滩羊生长性能和瘤胃微生物区系的影响[J]. 中国畜牧兽医, 2025, 52(6): 2540-2551. |
[3] | 于向宇, 张桂杰, 陈晓东. 植物多糖生物活性及其在反刍动物生产中应用的研究进展[J]. 中国畜牧兽医, 2025, 52(6): 2626-2636. |
[4] | 王泳, 马驰, 王超, 赵启南, 孙智鹏, 田丰, 王利, 金海, 李长青. miRNA和lncRNA调控反刍动物卵泡发育的分子机制研究进展[J]. 中国畜牧兽医, 2025, 52(2): 771-780. |
[5] | 张艳, 马森, 栗守仁, 皇甫卫康, 腊邵凯, 马季祥, 王志昌, 史莹华. 苜蓿皂苷提取物对断奶湖羊免疫、抗氧化能力和瘤胃微生物区系的影响[J]. 中国畜牧兽医, 2024, 51(7): 2799-2809. |
[6] | 姜露, 梁本聪, 徐泽君, 杨改青, 杨斯涵, 陈其新, 王献伟, 胡业勇, 王林枫, 高腾云. 补充胍基乙酸和α-硫辛酸对绵羊瘤胃微生物和代谢物的影响[J]. 中国畜牧兽医, 2024, 51(6): 2375-2387. |
[7] | 孙怡, 李帅, 谭昇, 杨宇峰, 李大刚, 闵力. 大型海藻在反刍动物生产中的应用[J]. 中国畜牧兽医, 2024, 51(6): 2440-2450. |
[8] | 马小雪, 龙锐, 牛玉杰, 郭红勇, 罗瑞卿, 吴妍妍, 张文举. 围产期饲粮中添加异位酸对奶牛瘤胃发酵参数、瘤胃微生物和生产性能的影响[J]. 中国畜牧兽医, 2024, 51(4): 1428-1437. |
[9] | 唐俊, 贺荔, 王彭辉, 何小龙, 易唤明, 程箫, 任春环, 陈家宏, 王强军, 张子军. 肠道微生物在反刍动物健康生产中的作用研究进展[J]. 中国畜牧兽医, 2024, 51(4): 1466-1479. |
[10] | 郑洁怡, 杨舒黎, 赵开玲, 宫莉, 李川. 热应激对反刍动物瘤胃功能及潜在耐热标志物的影响[J]. 中国畜牧兽医, 2024, 51(3): 1041-1049. |
[11] | 马婧, 邓嘉菡, 王巨泽, 杨志梅, 李雪峰, 昝林森. 葡萄籽原花青素对肉牛生长性能、血清生化指标及瘤胃内环境的影响[J]. 中国畜牧兽医, 2024, 51(12): 5290-5301. |
[12] | 李高龙, 吴兆海, 赵连生, 卜登攀, 王建平. 反刍动物甲烷减排研究进展[J]. 中国畜牧兽医, 2024, 51(11): 4812-4823. |
[13] | 李晓鹏, 高鹏翔, 蒋林树, 屠焰. 牛至精油缓解反刍动物瘤胃甲烷排放的研究进展[J]. 中国畜牧兽医, 2024, 51(1): 106-113. |
[14] | 陈宇, 刘俊阳, 穆卿, 卢泽宇, 李蕴华, 刘佳森, 吴子贤, 王浩源, 孙一文, 赵艳红. 长链非编码RNA调控牛科反刍动物相关经济性状的研究进展[J]. 中国畜牧兽医, 2024, 51(1): 203-211. |
[15] | 刘依莎, 许迟, 吴仙花, 李涛, 张巧娥. 发酵农副产品在反刍动物生产中的应用[J]. 中国畜牧兽医, 2023, 50(12): 4816-4825. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||