中国畜牧兽医 ›› 2021, Vol. 48 ›› Issue (10): 3595-3603.doi: 10.16431/j.cnki.1671-7236.2021.10.010
林泽堃, 庄晓娜, 罗君谊, 陈婷, 习欠云, 张永亮, 孙加节
收稿日期:
2021-04-23
出版日期:
2021-10-20
发布日期:
2021-09-30
通讯作者:
孙加节
E-mail:jiajiesun@scau.edu.cn
作者简介:
林泽堃(1997-),男,福建漳州人,硕士,研究方向:动物营养组学,E-mail:michaellinzk@gmail.com
基金资助:
LIN Zekun, ZHUANG Xiaona, LUO Junyi, CHEN Ting, XI Qianyun, ZHANG Yongliang, SUN Jiajie
Received:
2021-04-23
Online:
2021-10-20
Published:
2021-09-30
摘要: 骨骼肌发育与猪肉产量和品质密切相关,且受到各种因素的影响。近年来,非编码RNA (non-coding RNA,ncRNA)对骨骼肌发育的影响已成为新的研究热点之一。ncRNA主要包括微小RNA (microRNA,miRNA)、长链非编码RNA (long non-coding RNA,lncRNA)和环状RNA (circular RNA,circRNA),是一类不具有编码蛋白功能的RNA,最初被认为只是在转录或转录后水平调控基因的表达,但随着研究的深入,越来越多的ncRNA被证实参与骨骼肌细胞增殖、分化与凋亡等生物过程,其中miRNA可通过与靶基因互补序列结合发挥功能;lncRNA与circRNA主要作为分子海绵竞争性结合miRNA,解除其对靶基因的抑制作用。作者主要从ncRNA介绍及miRNA、lncRNA和circRNA对猪骨骼肌发育的影响等进行综述,并就ncRNA对猪骨骼肌生长发育的研究进行了展望。
中图分类号:
林泽堃, 庄晓娜, 罗君谊, 陈婷, 习欠云, 张永亮, 孙加节. 非编码RNA对猪骨骼肌发育的影响[J]. 中国畜牧兽医, 2021, 48(10): 3595-3603.
LIN Zekun, ZHUANG Xiaona, LUO Junyi, CHEN Ting, XI Qianyun, ZHANG Yongliang, SUN Jiajie. Effects of Non-coding RNAs on Skeletal Muscle Development in Pigs[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(10): 3595-3603.
[1] DOU M, YAO Y, MA L, et al.The long noncoding RNA MyHC ⅡA/X-AS contributes to skeletal muscle myogenesis and maintains the fast fiber phenotype[J]. Journal of Biological Chemistry, 2020, 295(15):4937-4949. [2] WANG X Y, CHEN X L, HUANG Z Q, et al.microRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression[J]. Animal, 2017, 11(12):2268-2274. [3] KAIKKONEN M U, ADELMAN K.Emerging roles of non-coding RNA transcription[J]. Trends in Biochemical Sciences, 2018, 43(9):654-667. [4] MATTICK J S, MAKUNIN I V.Non-coding RNA[J]. Human Molecular Genetics, 2006, 15(1):R17-R29. [5] 白凤庭, 李林, 陈军豪, 等.非编码RNA与骨骼肌发育研究进展[J]. 中国畜牧兽医, 2020, 47(11):3584-3594. BAI F T, LI L, CHEN J H, et al.Research progresson non-coding RNA and skeletal muscle development[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(11):3584-3594.(in Chinese) [6] ZHAO Y, CHEN M, LIAN D, et al.Non-coding RNA regulates the myogenesis of skeletal muscle satellite cells injury repair and diseases[J]. Cells, 2019, 8(9):988. [7] ZHU L, HOU L, OU J, et al.miR-199b represses porcine muscle satellite cells proliferation by targeting JAG1[J]. Gene, 2019, 691:24-33. [8] SOUSA M, DOLICKA D, GJORGJIEVA M, et al.Deciphering miRNAs'action through miRNA editing[J]. International Journal of Molecular Sciences, 2019, 20(24):6249. [9] IQBAL A, PING J, ALI S, et al.Role of microRNAs in myogenesis and their effects on meat quality in pig——A review[J]. Asian Australasian Journal of Animal Sciences, 2020, 33(12):1873-1884. [10] WEI J W, HUANG K, YANG C, et al.Non-coding RNAs as regulators in epigenetics (review)[J]. Oncology Reports, 2017, 37(1):3-9. [11] MOHR A M, MOTT J L.Overview of microRNA biology[J]. Seminars in Liver Disease, 2015, 35(1):3-11. [12] KROL J, LOEDIGE I, FILIPOWICZ W.The widespread regulation of microRNA biogenesis, function and decay[J]. Nature Reviews Genetics, 2010, 11(9):597-610. [13] GIL N, ULITSKY I.Regulation of gene expression by cis-acting long non-coding RNAs[J]. Nature Reviews Genetics, 2020, 21(2):102-117. [14] MARCHESE F P, RAIMONDI I, HUARTE M.The multidimensional mechanisms of long noncoding RNA function[J]. Genome Biology, 2017, 18(1):206. [15] QUINN J J, CHANG H Y.Unique features of long non-coding RNA biogenesis and function[J]. Nature Reviews Genetics, 2016, 17(1):47-62. [16] KOPP F, MENDELL J T.Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3):393-407. [17] ST LAURENT G, WAHLESTEDT C, KAPRANOV P.The landscape of long noncoding RNA classification[J]. Trends in Genetics, 2015, 31(5):239-251. [18] JARROUX J, MORILLON A, PINSKAYA M.History, discovery, and classification of lncRNAs[J]. Advances in Experimental Medicine and Biology, 2017, 1008:1-46. [19] MA L, BAJIC V B, ZHANG Z.On the classification of long non-coding RNAs[J]. RNA Biology, 2013, 10(6):925-933. [20] SANGER H L, KLOTZ G, RIESNER D, et al.Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(11):3852-3856. [21] HSU M, COCAPRADOS M.Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720):339-340. [22] LI B, YIN D, LI P, et al.Profiling and functional analysis of circular RNAs in porcine fast and slow muscles[J]. Frontiers in Cell and Developmental Biology, 2020, 8:322. [23] LUO H, LV W, TONG Q, et al.Functional non-coding RNA during embryonic myogenesis and postnatal muscle development and disease[J]. Frontiers in Cell and Developmental Biology, 2021, 9:628339. [24] JECK W R, SORRENTINO J A, WANG K, et al.Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2):141-157. [25] MENG S, ZHOU H, FENG Z, et al.circRNA:Functions and properties of a novel potential biomarker for cancer[J]. Molecular Cancer, 2017, 16(1):94. [26] JECK W R, SHARPLESS N E.Detecting and characterizing circular RNAs[J]. Nature Biotechnology, 2014, 32(5):453-461. [27] 谢月琴, 陈婷, 罗君谊, 等.circRNA作用机制及其对动物肌肉发育的影响[J]. 中国畜牧兽医, 2018, 45(8):2270-2275. XIE Y Q, CHEN T, LUO J Y, et al.Mechanism of circRNA and its effect on development of animal muscles[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(8):2270-2275.(in Chinese) [28] LEGNINI I, DI TIMOTEO G, ROSSI F, et al.circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Molecular Cell, 2017, 66(1):22-37. [29] 郑婷, 甘麦邻, 沈林園, 等.circRNA及其调控动物骨骼肌发育研究进展[J]. 遗传, 2020, 42(12):1178-1191. ZHENG T, GAN M L, SHEN L Y, et al.circRNA on animal skeletal muscle development regulation[J]. Hereditas, 2020, 42(12):1178-1191.(in Chinese) [30] DIALLO L H, TATIN F, DAVID F, et al.How are circRNAs translated by non-canonical initiation mechanisms?[J]. Biochimie, 2019, 164:45-52. [31] HORAK M, NOVAK J, BIENERTOVA-VASKU J.Muscle-specific microRNAs in skeletal muscle development[J]. Developmental Biology, 2016, 410(1):1-13. [32] HE D, ZOU T, GAI X, et al.microRNA expression profiles differ between primary myofiber of lean and obese pig breeds[J]. PLoS One, 2017, 12(7):e0181897. [33] XIE S, LI X, QIAN L, et al.An integrated analysis of mRNA and miRNA in skeletal muscle from myostatin-edited Meishan pigs[J]. Genome, 2019, 62(5):305-315. [34] MAI M, JIN L, TIAN S, et al.Deciphering the microRNA transcriptome of skeletal muscle during porcine development[J]. PeerJ, 2016, 4:e1504. [35] XIE S, CHEN L, ZHANG X, et al.An integrated analysis revealed different microRNA-mRNA profiles during skeletal muscle development between Landrace and Lantang pigs[J]. Scientific Reports, 2017, 7(1):2516. [36] FU L, WANG H, LIAO Y, et al.miR-208b modulating skeletal muscle development and energy homoeostasis through targeting distinct targets[J]. RNA Biology, 2020, 17(5):743-754. [37] GE J, ZHU J, XIA B, et al.miR-423-5p inhibits myoblast proliferation and differentiation by targeting Sufu[J]. Journal of Cell Biochemistry, 2018, 119(9):7610-7620. [38] HOU L, XU J, LI H, et al.miR-34c represses muscle development by forming a regulatory loop with Notch1[J]. Scientific Reports, 2017, 7(1):9346. [39] HOU L, ZHU L, LI H, et al.miR-501-3p forms a feedback loop with FOS, MDFI, and MyoD to regulate C2C12 myogenesis[J]. Cells, 2019, 8(6):573. [40] HOU L, XU J, JIAO Y, et al.miR-27b promotes muscle development by inhibiting MDFI expression[J]. Cell Physiology Biochemistry, 2018, 46(6):2271-2283. [41] MA M, WANG X, CHEN X, et al.microRNA-432 targeting E2F3 and P55PIK inhibits myogenesis through PI3K/Akt/mTOR signaling pathway[J]. RNA Biology, 2017, 14(3):347-360. [42] QIN J, SUN Y, LIU S, et al.microRNA-323-3p promotes myogenesis by targeting Smad2[J]. Journal of Cell Biochemistry, 2019, 120(11):18751-18761. [43] QIU H, ZHONG J, LUO L, et al.Regulatory axis of miR-195/497 and HMGA1-Id3 governs muscle cell proliferation and differentiation[J]. Internal Journal Biology Science, 2017, 13(2):157-166. [44] TANG Z, LIANG R, ZHAO S, et al.CNN3 is regulated by microRNA-1 during muscle development in pigs[J]. Internal Journal Biology Science, 2014, 10(4):377-385. [45] WANG H, SHI L, LIANG T, et al.miR-696 regulates C2C12 cell proliferation and differentiation by targeting CNTFRα[J]. Internal Journal Biology Science, 2017, 13(4):413-425. [46] ZHANG Y, YAN H, ZHOU P, et al.microRNA-152 promotes slow-twitch myofiber formation via targeting uncoupling protein-3 gene[J]. Animals(Basel), 2019, 9(9):669. [47] ZUO J, WU F, LIU Y, et al.microRNA transcriptome profile analysis in porcine muscle and the effect of miR-143 on the MYH7 gene and protein[J]. PLoS One, 2015, 10(4):e0124873. [48] SHEN L, CHEN L, ZHANG S, et al.microRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C(MEF2C) and potentially influences meat quality[J]. Meat Science, 2016, 116:201-206. [49] 李想.miR-208b通过抑制Mettl8表达调控骨骼肌纤维类型转化[D].北京:中国农业科学院, 2020. LI X.miR-208b regulates skeletal muscle fiber types conversion by inhibiting Mettl8 expression[D].Beijing:Chinese Academy of Agricultural Sciences, 2020.(in Chinese) [50] 张勇.microRNA-378b-3p对猪骨骼肌纤维类型转化的调节作用及其机制[D].雅安:四川农业大学, 2018. ZHANG Y.The role of microRNA-378b-3p in regulating porcine skeletal muscle fiber type conversion and its mechanism[D].Ya'an:Sichuan Agricultural University, 2018.(in Chinese) [51] YANG Y, LIANG G, NIU G, et al.Comparative analysis of DNA methylome and transcriptome of skeletal muscle in lean-, obese-, and mini-type pigs[J]. Scientific Reports, 2017, 7:39883. [52] JIN J J, LV W, XIA P, et al.Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(42):E9802-E9811. [53] GUO Y, WANG J, ZHU M, et al.Identification of MyoD-responsive transcripts reveals a novel long non-coding RNA(lncRNA-AK143003) that negatively regulates myoblast differentiation[J]. Scientific Reports, 2017, 7(1):2828. [54] HUANG Z, LI Q, LI M, LI C.Transcriptome analysis reveals the long intergenic noncoding RNAs contributed to skeletal muscle differences between Yorkshire and Tibetan pig[J]. Scientific Reports, 2021, 11(1):2622. [55] TAN Y, GAN M, SHEN L, et al.Profiling and functional analysis of long noncoding RNAs and mRNAs during porcine skeletal muscle development[J]. Internal Journal of Molecular Sciences, 2021, 22(2):503. [56] DEY B K, PFEIFER K, DUTTA A.The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration[J]. Genes & Development, 2014, 28(5):491-501. [57] LI L, CHENG X, CHEN L, et al.Long noncoding ribonucleic acid MSTRG.59589 promotes porcine skeletal muscle satellite cells differentiation by enhancing the function of PALLD[J]. Frontiers in Genetics, 2019, 10:1220. [58] LI R, LI B, JIANG A, et al.Exploring the lncRNAs related to skeletal muscle fiber types and meat quality traits in pigs[J]. Genes(Basel), 2020, 11(8):883. [59] LI J, ZHAO W, LI Q, et al.Long non-coding RNA H19 promotes porcine satellite cell differentiation by interacting with TDP43[J]. Genes(Basel), 2020, 11(3):259. [60] LI J, SU T, ZOU C, et al.Long non-coding RNA H19 regulates porcine satellite cell differentiation through miR-140-5p/SOX4 and DBN1[J]. Frontiers in Cell and Developmental Biology, 2020, 8:518724. [61] 程晓芳.lncRNA-MEG3调控猪骨骼肌卫星细胞分化的机制研究[D].武汉:华中农业大学, 2020. CHENG X F.Mechanisms of lncRNA-MEG3 in regulating the differentiation of porcine satellite cells[D].Wuhan:Huazhong Agricultural University, 2020.(in Chinese) [62] LV W, JIN J, XU Z, et al.lncMGPF is a novel positive regulator of muscle growth and regeneration[J]. Journal of Cachexia Sarcopenia Muscle, 2020, 11(6):1723-1746. [63] WANG S, ZUO H, JIN J, et al.Long noncoding RNA Neat1 modulates myogenesis by recruiting Ezh2[J]. Cell Death Disease, 2019, 10(7):505. [64] ZHANG Z K, LI J, GUAN D, et al.A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration[J]. Journal of Cachexia Sarcopenia Muscle, 2018, 9(3):613-626. [65] ZHOU L, SUN K, ZHAO Y, et al.Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1[J]. Nature Communication, 2015, 6:10026. [66] 李倩倩, 李龙, 黄子莹, 等.猪lncRNA TCONS_00791383对骨骼肌卫星细胞增殖分化的影响[J]. 畜牧兽医学报, 2020, 51(6):1177-1186. LI Q Q, LI L, HUANG Z Y, et al.Effect of pig lncRNA TCONS_00791383 on the proliferation and differentiation of skeletal muscle satellite cells[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6):1177-1186.(in Chinese) [67] YANG R, LIU Y, CHENG Y, et al.Effects and molecular mechanism of single-nucleotide polymorphisms of MEG3 on porcine skeletal muscle development[J]. Frontiers in Genetics, 2021, 12:607910. [68] WANG L, HE T, ZHANG X, et al.Global transcriptomic analysis reveals lnc-ADAMTS9 exerting an essential role in myogenesis through modulating the ERK signaling pathway[J]. Journal Animal Science Biotechnology, 2021, 12(1):4. [69] YUE B, WANG J, SONG C, et al.Biogenesis and ceRNA role of circular RNAs in skeletal muscle myogenesis[J]. International Journal of Biochemistry Cell Biology, 2019, 117:105621. [70] ZHANG P, CHAO Z, ZHANG R, et al.Circular RNA regulation of myogenesis[J]. Cells, 2019, 8(8):885. [71] DAS A, DAS A, DAS D, et al.Circular RNAs in myogenesis[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2020, 1863(4):194372. [72] HONG L, GU T, HE Y, et al.Genome-wide analysis of circular RNAs mediated ceRNA regulation in porcine embryonic muscle development[J]. Frontiers in Cell and Developmental Biology, 2019, 7:289. [73] SUN J, XIE M, HUANG Z, et al.Integrated analysis of non-coding RNA and mRNA expression profiles of 2 pig breeds differing in muscle traits[J]. Journal of Animal Science, 2017, 95(3):1092-1103. [74] LIANG G, YANG Y, NIU G, et al.Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages[J]. DNA Research, 2017, 24(5):523-535. [75] SHEN L, GAN M, TANG Q, et al.Comprehensive analysis of lncRNAs and circRNAs reveals the metabolic specialization in oxidative and glycolytic skeletal muscles[J]. International of Journal Molecular Science, 2019, 20(12):2855. [76] LI H, YANG J, WEI X, et al.circFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J]. Journal of Cell Physiology, 2018, 233(6):4643-4651. [77] LI L, CHEN Y, NIE L, et al.MyoD-induced circular RNA CDR1as promotes myogenic differentiation of skeletal muscle satellite cells[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2019, 1862(8):807-821. [78] YAO R, YAO Y, LI C, et al.circ-HIPK3 plays an active role in regulating myoblast differentiation[J]. International Journal of Biological Macromolecules, 2020, 155:1432-1439. [79] YUE B, WANG J, RU W, et al.The circular RNA circHUWE1 sponges the miR-29b-Akt3 axis to regulate myoblast development[J]. Molecular Therapy-Nucleic Acids, 2020, 19:1086-1097. [80] 曹海港.猪骨骼肌纤维类型关键circRNAs的筛选及circMYLK4的功能研究[D].杨凌:西北农林科技大学, 2019. CAO H G.Screening of key circRNAs in skeletal muscle fiber types of pigs and functional study of circMYLK4[D].Yangling:Northwest A&F University, 2019.(in Chinese) [81] WANG Y, LI M, WANG Y, et al.A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p[J]. International Journal of Biological Macromolecules, 2019, 121:1308-1313. [82] GAO M, LI X, YANG Z, et al.circHIPK3 regulates proliferation and differentiation of myoblast through the miR-7/TCF12 pathway[J]. Journal of Cell Physiology, 2021, 10:1-13. |
[1] | 吕玲燕, 孙如玉, 林昌华, 张胜斌, 覃秀珍, 柏秀芳, 吴永绍, 陈钊, 刘磊, 张冰, 蒋家霞, 张家庆. 后备母猪发情期和乏情期下丘脑-垂体-卵巢性腺轴miRNA-mRNA表达谱比较分析[J]. 中国畜牧兽医, 2025, 52(7): 2965-2980. |
[2] | 郁希龙, 张小雨, 冀凤杰, 胡诚军, 彭维祺, 徐良梅, 吕仁龙, 武洪志. 不同净能水平饲粮对屯昌猪结肠微生物区系和短链脂肪酸组成的影响[J]. 中国畜牧兽医, 2025, 52(7): 3093-3103. |
[3] | 吴诗樵, 陈亮. 饲粮纤维水平和食糜收集期对生长猪回肠食糜消化酶活性、养分流量和短链脂肪酸组分的影响[J]. 中国畜牧兽医, 2025, 52(7): 3136-3144. |
[4] | 贾纯琰, 孙燕勇, 包永红, 张文广, 杜晨光. 基于转录组学分析受外源褪黑素诱导调控羊绒生长的mRNA和lncRNA的可变剪接[J]. 中国畜牧兽医, 2025, 52(7): 3165-3177. |
[5] | 李指全, 傅思静, 徐舒平, 高萌若, 杨涛涛, 张志榜, 李凯, 李鹏成. 武夷黑猪HSPA5基因克隆、生物信息学分析及组织表达研究[J]. 中国畜牧兽医, 2025, 52(7): 3214-3224. |
[6] | 聂晶坤, 张雅轩, 杨希妍, 王素青, 朱晓萍, 赵云翔. 杜洛克公猪精液性状的遗传参数估计[J]. 中国畜牧兽医, 2025, 52(7): 3256-3263. |
[7] | 陈志安, 章蓓雯, 何敏嘉, 陈美椿, 翁成桢, 黄欣欣, 李鸿喜, 曾仲文, 陈宝良, 邱龙新, 陈洪博, 李晓冰. 猪伪狂犬病病毒gE基因遗传变异及密码子使用偏好性分析[J]. 中国畜牧兽医, 2025, 52(7): 3264-3275. |
[8] | 张丽萌, 李闰婷, 宋月, 聂晓宁, 孔莉, 单靖微, 许盈盈, 王林青, 陈龙欣. 猪细小病毒NS1蛋白单链抗体库的构建及筛选[J]. 中国畜牧兽医, 2025, 52(7): 3276-3285. |
[9] | 阮诗慧, 刘春艳, 韦洋洋, 何逸懿, 吴绮雯, 熊云霞, 杨雪芬, 王丽, 易宏波. 猪δ冠状病毒对断奶仔猪肠道细胞外基质及其动态变化的影响[J]. 中国畜牧兽医, 2025, 52(7): 3297-3307. |
[10] | 张翩, 陈晶, 张晓晓, 麦小鹏, 唐科, 向华, 王刚, 罗胜军, 马惠海, 袁子国, 王晓虎. 弓形虫GRA1蛋白表达及间接ELISA检测方法的建立[J]. 中国畜牧兽医, 2025, 52(7): 3308-3320. |
[11] | 章冰艳, 范瑞, 冯书堂, 贾俊婷, 张建斌, 马玉媛. 无PERV传染性“中畜”五指山小型猪近交系全基因组重测序分析[J]. 中国畜牧兽医, 2025, 52(6): 2459-2467. |
[12] | 牛舒冉, 潘剑锋, 戎友俊, 敖晓芳, 王一涵, 尚方正, 王瑞军, 张燕军. 环状RNA在羊重要经济性状中的应用研究[J]. 中国畜牧兽医, 2025, 52(6): 2468-2481. |
[13] | 杨泉, 李晓, 闫尊强, 王鹏飞, 黄晓宇, 高小莉, 杨巧丽, 滚双宝, 杨姣姣. 合作猪CXCL12基因克隆、生物信息学分析及组织表达研究[J]. 中国畜牧兽医, 2025, 52(6): 2482-2493. |
[14] | 任灏, 朱怡轩, 晁婷婷, 王孝义, 鲁绍雄, 杨永立, 陈强, 李明丽. 不同生长速度撒坝猪背最长肌lncRNA筛选与功能预测[J]. 中国畜牧兽医, 2025, 52(6): 2494-2505. |
[15] | 曹丽华, 李华丽, 任慧波, 罗保明, 刘莹莹, 崔清明, 邓缘, 朱吉, 胡雄贵, 罗建辉, 左剑波, 陈晨, 彭英林. 性别和屠宰体重对广益黑猪胴体性能和肉品质的影响[J]. 中国畜牧兽医, 2025, 52(6): 2612-2625. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||