China Animal Husbandry & Veterinary Medicine ›› 2025, Vol. 52 ›› Issue (10): 4765-4775.doi: 10.16431/j.cnki.1671-7236.2025.10.022
• Genetics and Breeding • Previous Articles
WANG Chenyu1,2, CHEN Shihao1, BI Yulin1, CHEN Guohong1,2, CHANG Guobin1,2, BAI Hao1
Revised:2025-04-24
Published:2025-09-30
CLC Number:
WANG Chenyu, CHEN Shihao, BI Yulin, CHEN Guohong, CHANG Guobin, BAI Hao. Gene Editing Technology and Its Application in Poultry Disease-resistant Breeding[J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(10): 4765-4775.
| [1] 李万利,李文清,王明发,等.锌指核酸酶及其应用研究进展[J].河南农业科学,2014,43(8):1-9. LI W L,LI W Q,WANG M F,et al.Research progress on zinc finger nuclease and its application[J].Journal of Henan Agricultural Sciences,2014,43(8):1-9.(in Chinese) [2] SAKUMA T,YAMAMOTO T.Updated overview of TALEN construction systems[J].Genome Editing in Animals:Methods and Protocols,2023,2637:27-39. [3] YIN W,CHEN Z,HUANG J,et al.Application of CRISPR-Cas9 gene editing technology in crop breeding[J].Chinese Journal of Biotechnology,2023,39(2):399-424. [4] HUANG S,YAN Y,SU F,et al.Research progress in gene editing technology[J].Frontiers in Bioscience-Landmark,2021,26(10):916-927. [5] SHI Y,FU X,YIN Y,et al.CRISPR-Cas12a system for biosensing and gene regulation[J].Chemistry,2021,16(8):857-867. [6] WU S,TIAN P,TAN T.CRISPR-Cas13 technology portfolio and alliance with other genetic tools[J].Biotechnology Advances,2022,61:108047. [7] 王丽媛,付瑜瑜,谢元斌.单碱基编辑技术在治疗遗传性贫血中的应用[J].中国生物化学与分子生物学报,2024,40(6):770-778. WANG L Y,FU Y Y,XIE Y B.Application of single base editing technology in the treatment of hereditary anemia[J].Chinese Journal of Biochemistry & Molecular Biology,2024,40(6):770-778.(in Chinese) [8] 周磊,李东旭,冒魏佳,等.Cas9和PE介导湖羊骨骼肌卫星细胞MSTN基因敲除的研究[J].南京农业大学学报,2025,48(2):419-426. ZHOU L,LI D X,MAO W J,et al.Cas9 and PE-mediated MSTN gene knockout in skeletal muscle satellite cells of Hu sheep[J].Journal of Nanjing Agricultural University,2025,48(2):419-426.(in Chinese) [9] GONEN S,JENKO J,GORJANC G,et al.Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs[J].Genetics Selection Evolution,2017,49(1):3. [10] PORTEUS M H,BALTIMORE D.Chimeric nucleases stimulate gene targeting in human cells[J].Science,2003,300(5620):763. [11] CORNU T I,THIBODEAU-BEGANNY S,GUHL E,et al.DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases[J].Molecular Therapy,2008,16(2):352-358. [12] WILSON K A,MCEWEN A E,PRUETT-MILLER S M,et al.Expanding the repertoire of target sites for zinc finger nuclease-mediated genome modification[J].Molecular Therapy-Nucleic Acids,2013,2(4):e88. [13] KIM Y G,CHA J,CHANDRASEGARAN S.Hybrid restriction enzymes:Zinc finger fusions to Fok Ⅰ cleavage domain[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(3):1156-1160. [14] BIBIKOVA M,GOLIC M,GOLIC K G,et al.Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J].Genetics,2002,161(3):1169-1175. [15] HAUSCHILD J,PETERSEN B,SANTIAGO Y,et al.Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(29):12013-12017. [16] CARLSON D F,FAHRENKRUG S C,HACKETT P B.Targeting DNA with fingers and TALENs[J].Molecular Therapy-Nucleic Acids,2012,1(1):e3. [17] QIAN L,TANG M,YANG J,et al.Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Scientific Reports,2015,5(1):14435. [18] ZHANG H X,ZHANG Y,YIN H.Genome editing with mRNA encoding ZFN,TALEN,and Cas9[J].Molecular Therapy,2019,27(4):735-746. [19] CARLSON D F,TAN W,LILLICO S G,et al.Efficient TALEN-mediated gene knockout in livestock[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(43):17382-17387. [20] MOSCOU M J,BOGDANOVE A J.A simple cipher governs DNA recognition by TAL effectors[J].Science,2009,326(5959):1501. [21] 柴楠,刘雨馨,张瑞祥,等.基因组编辑工具的发展:从CRISPR/Cas9到TnpB[J].基因组学与应用生物学,2023,42(12):1267-1274. CHAI N,LIU Y X,ZHANG R X,et al.Development of genome editing tools:From CRISPR/Cas9 to TnpB[J].Genomics and Applied Biology,2023,42(12):1267-1274.(in Chinese) [22] JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821. [23] CARLSON D F,WALTON M W,FAHRENKRUG S C,et al.Precision editing of large animal genomes[J].Advances in Genetics,2012,80:37-97. [24] NISHIMASU H,SHI X,ISHIGURO S,et al.Engineered CRISPR-Cas9 nuclease with expanded targeting space[J].Science,2018,361(6408):1259-1262. [25] LEI Z,MENG H,LV Z,et al.Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors[J].Nature Methods,2021,18(6):643-651. [26] JIN S,ZONG Y,GAO Q,et al.Cytosine,but not adenine,base editors induce genome-wide off-target mutations in rice[J].Science,2019,364(6437):292-295. [27] ANZALONE A V,KOBLAN L W,LIU D R.Genome editing with CRISPR-Cas nucleases,base editors,transposases and prime editors[J].Nature Biotechnology,2020,38(7):824-844. [28] YANG Y,WANG D,LV P,et al.Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system[J].Molecular Biology Reports,2023,50(4):3723-3738. [29] ABUDAYYEH O O,GOOTENBERG J S,KONERMANN S,et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science,2016,353(6299):aaf5573. [30] GANDHI P U,GAGGIN H K,REDFIELD M M,et al.Insulin-like growth factor-binding protein-7 as a biomarker of diastolic dysfunction and functional capacity in heart failure with preserved ejection fraction:Results from the RELAX trial[J].JACC:Heart Failure,2016,4(11):860-869. [31] MILLER J B,ZHANG S,KOS P,et al.Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA[J].Angewandte Chemie,2017,129(4):1079-1083. [32] QIU L,SUN M,CHEN L,et al.Iron-confined CRISPR/Cas9-ribonucleoprotein delivery system for redox-responsive gene editing[J]. Small,2024,20(30):e2309431. [33] LI X,YANG Y,BU L,et al.Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing[J].Cell Research,2014,24(4):501-504. [34] 赖良学.基因修饰猪技术及其应用[A].广东省遗传学会第九届代表大会暨学术研讨会论文及摘要汇编[C].2014. LAI L X.Genetically modified pig technology and its application[A].Compilation of Papers and Abstracts of the 9th Congress and Symposium of Guangdong Genetics Society[C].2014.(in Chinese) [35] WU H,WANG Y,ZHANG Y,et al.TALE nickase-mediated SP110 knock in endows cattle with increased resistance to tuberculosis[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(13):E1530-E1539. [36] XIE Z,JIAO H,XIAO H,et al.Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J].Antiviral Research,2020,174:104696. [37] LEE J,KIM D H,LEE K.Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide[J]. International Journal of Molecular Sciences,2020,21(4):1504. [38] LEE H J,PARK K J,LEE K Y,et al.Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A,B,and J[J]. Journal of Animal Science and Biotechnology,2019,10:23. [39] KOSLOVÁ A,KU AČG EROVÁ D,REINIŠOVÁ M,et al.Genetic resistance to Avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells[J].Viruses,2018,10(11):605. [40] CHEN Y,WANG S,LI X,et al.Residues L55 and W69 of Tva mediate entry of subgroup A Avian leukosis virus[J].Journal of Virology,2022,96(18):e00678-22. [41] KOSLOVÁ A,TREFIL P,MUCKSOVÁ J,et al.Knock-out of Retrovirus receptor gene Tva in the chicken confers resistance to Avian leukosis virus subgroups A and K and affects cobalamin (vitamin B12)-dependent level of methylmalonic acid[J].Viruses,2021,13(12):2504. [42] KOSLOVÁ A,TREFIL P,MUCKSOVÁ J,et al.Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of Avian leukosis virus[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(4):2108-2112. [43] LEE H J,LEE K Y,PARK Y H,et al.Acquisition of resistance to Avian leukosis virus subgroup B through mutations on Tvb cysteine-rich domains in DF-1 chicken fibroblasts[J].Veterinary Research,2017,48(1):48. [44] LI X,CHEN Y,YU M,et al.Residues E53,L55,H59,and G70 of the cellular receptor protein Tva mediate cell binding and entry of the novel subgroup K Avian leukosis virus[J].Journal of Biological Chemistry,2023,299(3):102962. [45] ZHANG Y,LUO J,TANG N,et al.Targeted editing of the pp38 gene in Marek’s disease virus-transformed cell lines using CRISPR/Cas9 system[J].Viruses,2019,11(5):391. [46] LUO J,TENG M,ZAI X,et al.Efficient mutagenesis of Marek’s disease virus-encoded microRNAs using a CRISPR/Cas9-based gene editing system[J].Viruses,2020,12(4):466. [47] GAO P,CHEN L,FAN L,et al.Newcastle disease virus RNA-induced IL-1β expression via the NLRP3/Caspase-1 inflammasome[J].Veterinary Research,2020,51(1):53. [48] WANG L,XUE Z,WANG J,et al.Targeted knockout of Mx in the DF-1 chicken fibroblast cell line impairs immune response against Newcastle disease virus[J].Poultry Science,2023,102(9):102855. [49] HEATON B E,KENNEDY E M,DUMM R E,et al.A CRISPR activation screen identifies a Pan-avian influenza virus inhibitory host factor[J].Cell Reports,2017,20(7):1503-1512. [50] PARK J S,WOO S J,SONG C S,et al.Modification of surface glycan by expression of beta-1,4-N-acetyl-galactosaminyltransferase (B4GALNT2) confers resistance to multiple viruses infection in chicken fibroblast cell[J].Frontiers in Veterinary Science,2023,10:1160600. [51] 孙婷婷,岑山,王静.甲型流感病毒宿主适应的分子基础及其相关宿主因子的研究进展[J].遗传,2023,45(11):976-985. SUN T T,CEN S,WANG J.Research progress on the molecular basis of host adaptation of Influenza A virus and its related host factors[J].Heredity,2023,45(11):976-985.(in Chinese) [52] LONG J S,IDOKO-AKOH A,MISTRY B,et al.Species specific differences in use of ANP32 proteins by Influenza A virus[J].eLife,2019,8:e45066. [53] BASIT A,TAHIR H,HAIDER Z,et al.CRISPR/Cas9-based deletion of SpvB gene from Salmonella Gallinarum leads to loss of virulence in chicken[J].Frontiers in Bioengineering and Biotechnology,2022,10:885227. [54] TAHIR H,BASIT A,TARIQ H,et al.Coupling CRISPR/Cas9 and lambda Red recombineering system for genome editing of Salmonella Gallinarum and the effect of ssaU knock-out mutant on the virulence of bacteria[J].Biomedicines,2022,10(12):3028. [55] ZHENG Q,BAI L,ZHENG S,et al.Efficient inhibition of Duck hepatitis B virus DNA by the CRISPR/Cas9 system[J].Molecular Medicine Reports,2017,16(5):7199-7204. [56] LIANG S,WANG M S,ZHANG B,et al.NOD1 is associated with the susceptibility of pekin duck flock to duck Hepatitis A virus genotype 3[J].Frontiers in Immunology,2021,12:766740. [57] BELLOC C C,DUPUIS L,DEVILLE S,et al.Evaluation of safety and immune response induced by several adjuvants included in Pasteurella multocida vaccines in chickens[J].Revue de Médecine Vétérinaire,2008,159(7):371-375. [58] APINDA N,MUENTHAISONG A,CHOMJIT P,et al.Simultaneous protective immune responses of ducks against duck plague and fowl cholera by recombinant Duck enteritis virus vector expressing Pasteurella multocida OmpH gene[J].Vaccines,2022,10(8):1358. [59] CHANG P,YAO Y,TANG N,et al.The application of NHEJ-CRISPR/Cas9 and Cre-Lox system in the generation of bivalent Duck enteritis virus vaccine against Avian influenza virus[J].Viruses,2018,10(2):81. [60] ZOU Z,HUANG K,WEI Y,et al.Construction of a highly efficient CRISPR/Cas9-mediated Duck enteritis virus-based vaccine against H5N1 Avian influenza virus and Duck Tembusu virus infection[J].Scientific Reports,2017,7(1):1478. [61] SALTER D W,SMITH E J,HUGHES S H,et al.Gene insertion into the chicken germ line by Retroviruses[J].Poultry Science,1986,65(8):1445-1458. [62] LILLICO S G,SHERMAN A,MCGREW M J,et al.Oviduct-specific expression of two therapeutic proteins in transgenic hens[J].Proceedings of the National Academy of Sciencesof the United States of America,2007,104(6):1771-1776. [63] RAJU T S,BRIGGS J B,BORGE S M,et al.Species-specific variation in glycosylation of IgG:Evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics[J].Glycobiology,2000,10(5):477-486. |
| [1] | LIAO Hongtao, WEN Run, YAN Pupu, HUANG Yongxi, LIU Man, ZHU Jun, CHENG Haishan, GONG Yinuo, PENG Yangyun, QIN Meilin, LI Rong, SU Yingbing, GUO Liwei. Exploring of Mechanism of Action of Sihuang Zhili Granules in Treatment of Diarrhea in Livestock and Poultry by UPLC-Q-TOF-MS Combined with Network Pharmacology and Molecular Dynamics Simulation [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(9): 4427-4439. |
| [2] | LI Liuhui, GUO Fangchao, ZHOU Yinquan, WANG Yaya, PENG Weilong, YIN Shaojie. Research Progress on Biological Function of Paeonol and Its Application in Clinical Anti-inflammatory of Livestock and Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(9): 4440-4452. |
| [3] | LAO Yingdi, HOU Caiqin, LI Xin, GUO Yiwen, HU Debao, GUO Hong, ZHANG Linlin, DING Xiangbin. Research Progress on Intramuscular Fat Deposition Related Genes in Livestock and Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2603-2611. |
| [4] | LIN Yanzhi, DENG Dun, MA Xianyong, YU Miao, LU Yusheng, SONG Min, JIANG Qingyan. Advances in Production and in vitro Degradation of Skatole in Livestock and Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2650-2661. |
| [5] | CAI Yucheng, WU Guanyuan, YANG Haidong, FANG Yinuo, CHEN Zhisheng, ZHAN Xiaoshu. Mechanisms and Current Applications of Probiotics in Animal Health Management [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2101-2114. |
| [6] | ZHU Bin, ZHOU Xingyou, WUJunquan, CHEN Huiying, ZHUJianfeng, QIJiaojiao, HU Wenfeng, YANG Meiyan. Phage Therapy in Mycoplasma Disease Management:Advances in Prevention and Treatment Strategies for Livestock and Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1763-1775. |
| [7] | ZHANG Lingyu, ZHANG Jiaxi, WEI Yuxuan, WU Qiong. Research Progress on Hazards of Bisphenol A and Its Substitutes to Livestock and Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1317-1327. |
| [8] | YANG Xinshuo, CHANG Danyi, XU Dandan, ZHANG Haihua, MA Qiugang, HUANG Shimeng. Advances in the Impact of Tryptophan and Its Bacterial Metabolites on Intestinal Barrier Function and Growth Performance in Livestock and Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 636-644. |
| [9] | ZHANG Yao, ZHU Liyang, YANG Ying, HOU Jingyan, HAN Taoze, WANG Kailong, XU Yaxi, SHENG Xihui. Research Progress on Inosine Monophosphate in Livestock and Poultry Muscle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 686-697. |
| [10] | JIA Wenfeng, JIANG Xiangxiang, TAO Huili, WANG Anping, WU Zhi, ZHU Shanyuan. Development of a Method for Rapid Construction of Recombinant Duck Enteritis Virus Based on HDR-CRISPR/Cas9 Technology [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 298-309. |
| [11] | HU Xiaodi, ZHEN Wenrui, BAI Dongying, ZHONG Jiale, ZHANG Ruilin, ZHANG Haojie, ZHANG Yi, MA Yanbo. Interactions and Their Mechanisms Between Stress and Poultry Intestinal Microbiota [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(6): 2471-2480. |
| [12] | XIE Xinfeng, WANG Ziyi, ZHONG Ziqi, PAN Deyou, NI Shiheng, XIAO Qian. Advances in Extended Methods of Genome-Wide Association Studies and Their Applications in Livestock and Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1382-1389. |
| [13] | XIE Binghong, SHAN Yanju, FAN Chenyu, XUE Fuguang, WU Hongxiang, JU Xiaojun, SHU Jingting, LIU Yifan. Research Progress on Influencing Factors and Transformation of Skeletal Muscle Fiber Types in Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1561-1572. |
| [14] | TAN Lei, PENG Xiaoye, WANG Kaixin, HUANG Xiaojiu, ZHANG Fan, YU Siyu. Role and Mechanism of Histone Deacetylase in Livestock and Poultry Virus Infection [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 1259-1266. |
| [15] | LI Yafei, LIANG Xiaoyun, WU Liqin, XIAO Tianan, WANG Fuhua, ZENG Zhenling. Drug Resistance and Prevalence of Escherichia coli Isolated from Livestock and Poultry in Areas of Guangdong [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 837-849. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||