China Animal Husbandry & Veterinary Medicine ›› 2026, Vol. 53 ›› Issue (2): 543-554.doi: 10.16431/j.cnki.1671-7236.2026.02.003
• Review • Previous Articles Next Articles
SHI Jiaqi(
), WANG Chengming, WANG Wenjing, ZHANG Zhuoya, YANG Lijie(
)
Revised:2025-09-03
Online:2026-02-20
Published:2026-01-28
Contact:
YANG Lijie
E-mail:Sjq77317@163.com;yanglijie@sdau.edu.cn
CLC Number:
SHI Jiaqi, WANG Chengming, WANG Wenjing, ZHANG Zhuoya, YANG Lijie. Research Progress on the Exploration and Breeding of Microbial Germplasm Resources[J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(2): 543-554.
Table 1
Application of culturomics in microbial screening"
样本来源 Sample source | 微生物种类 Microbial species | 所用技术 Technology | 优点 Advantages | 参考文献 References | |
|---|---|---|---|---|---|
动物 Animals | 奶牛粪便 Dairy cow feces | 芽孢杆菌 | 6种培养基筛选芽孢杆菌、特异性引物PCR检测、生物信息相似性检测 | 提高筛选出的芽孢杆菌种类及数量 | 王浩先等[ |
人体血液 Human blood | 苏云金芽孢杆菌、痤疮丙酸杆菌、短短芽孢杆菌等 | 培养组学培养鉴定、宏基因组学进行物种分析 | 培养组学与宏基因组学相互验证,准确性高 | 赵梦伊等[ | |
人体阴道 Human vagina | 乳杆菌、链球菌、放线菌、拟杆菌等 | 35种不同培养基、 MALDI-TOF MS鉴定 | 精确的描述微生物及多样性 | Abou Chacra等[ | |
人体肺部 Human lung | 副血链球菌、毗邻颗粒链菌、非典型韦荣菌等 | 采用瘤胃液和羊血的厌氧/需氧培养基、MALDI-TOF MS检测、16S rRNA基因测序 | 提高微生物丰度 | 刘月姣等[ | |
人体粪便 Human feces | 普雷沃氏菌、脆弱拟杆菌、普氏粪杆菌等 | 宏基因组学和培养组学相结合 | 微生物信息、菌株-菌株/宿主互作信息丰富,靶向筛选功能菌 | 句英娇等[ | |
肉鸡盲肠 Broiler cecum | 果囊乳杆菌、粪肠球菌、乳杆菌、拟杆菌等 | 16S rDNA测序、不同时间/培养基培养、MALDI-TOF MS技术 | 可培养出未培养或难培养的菌株,简单、快速、高通量 | 黄明星 [ | |
乙肝患者粪便 Feces of patients with hepatitis B | 拟杆菌属、肠球菌属、肠球菌属、链球菌属等 | 厌/需氧培养基、MALDI-TOF MS检测、16S rDNA测序 | 提高对菌群失调和乙肝病毒关系的认识 | Magdy Wasfy等[ | |
自然环境 Natural environment | 森林沉积物 Forest sediment | 热带念珠菌、粪壳菌纲、散囊菌纲、座囊菌纲等 | 真菌富集培养法和真菌分离芯片 | 提高未培养真菌的分离与检测效率 | Li等[ |
海洋沉积物 Marine sediment | 放线菌、黄叶杆菌、疣状菌等 | 微胶囊原位培养 | 筛选出更多菌种 | Pope等[ | |
苜蓿根部 Alfalfa roots | 草木樨中华根瘤菌、苜蓿根瘤菌、荣杆菌属、新鞘脂菌属等 | 纯植物性培养基、16S rDNA测序 | 显著提高苜蓿根部内生菌的可培养数量 | Hagazi等[ | |
Table 2
Cell sorting methods and applications"
类别 Category | 方法 Methods | 功能 Functions | 应用 Applications | 优点 Advantages | 参考文献 References |
|---|---|---|---|---|---|
微囊封装 Microcapsule encapsulation | 凝固琼脂糖微胶囊 | 封装单个细胞 | 鉴定并分离浮游菌和α变形菌 | 应用环境广 | Zengler等[ |
| 海藻酸盐微胶囊 | 将细菌与海藻酸钠溶液混合后,滴入含Ca2+的溶液中,将微生物包裹培养 | 培养疣状微生物和Epsilonproteo | 可模拟天然微环境,避免种间抑制,提高菌株存活率 | Ji等[ | |
基于特定标记分选 Marker-specific sorting | 荧光激活 | 将目标微生物荧光标记,通过仪器检测荧光信号,筛选具有特殊功能的菌种 | 根据液滴特性对封装微生物进行分选 | 精准定位功能菌,避免不必要干扰 | Eun等[ |
微环境培养 Microenvironment cultivation | 微生物液滴培养系统 | 根据需要对液滴进行操纵培养 | 将液滴封装在聚磺酸盐膜内,实现细胞与环境隔离培养 | 可对生长缓慢的微生物进行单独培养 | Jian等[ |
| 微生物观察和培养阵列 | 不需要任何复杂设备,进行小规模微生物培养 | 分离海洋微生物,包括假交替单胞菌属、希瓦氏菌属、科尔韦利亚属 | 系统更简单,可在较小的体系中利用不同培养基进行培养 | Gao等[ | |
拉曼细胞分选 Raman-activated cell sorting | 单细胞拉曼光谱 | 激光与样品作用激发化学键振动或旋转以识别分子指纹,结合共聚焦显微镜等实现单细胞检测 | 对细胞功能进行定量及多方面研究 | 高通量,高纯度 | Yan等[ |
光镊技术 Optical tweezers | 使用高度聚焦的激光束来捕捉和操纵微观的中性物体 | 分离海洋微生物 | 无需物理接触即可在无菌封闭室中实现细胞分离 | Liu等[ |
Table 3
Industrialized products and production challenges of microbial cell factories"
产物类型 Product types | 代表产物 Representative products | 底盘细胞 Chassis cells | 应用 Applications | 挑战 Challenges | 突破方向 Breakthrough direction | 参考文献 References |
|---|---|---|---|---|---|---|
医药 Medical drugs | 青蒿酸 | 酿酒酵母 | 产量从0.1 g/L提高到25 g/L,治疗疟疾 | 氧化酶活性低,生产效率低 | 优化宿主中氧化酶性能 | Ro等[ |
| 白藜芦醇 | 酿酒酵母、大肠杆菌 | 产量约5 g/L,预防糖尿病、癌症 | 底盘微生物生长受产物抑制 | 构建耐受性底盘细胞 | Wu等[ | |
| 类胡萝卜素 | 酿酒酵母 | 滴度达到2.09 g/L,降低慢性病风险 | 产率较低 | 诱变和高通量筛选结合,选育高产菌株 | Cho等[ | |
燃料 Fuels | 生物乙醇 | 蓝藻菌 | 清洁燃料 | 生产效率低 | 利用基因编辑技术敲除竞争途径基因 | Zhao等[ |
| 丁醇 | 梭菌 | 航空燃料 | 原料成本高,产物自身抑制微生物生长 | 发掘具有丁醇耐受基因菌株 | Borden等[ | |
生物材料 Biomaterials | 聚羟基脂肪酸酯 | 假单胞菌 | 降解塑料 | 产率低,底物成本高 | 简化提取过程,降低成本 | Ene等[ |
| 聚乳酸 | 酿酒酵母、大肠杆菌 | 食品包装 | 耐热性差 | 在聚乳酸链中引入其他单体形成共聚物 | Yang等[ | |
| 透明质酸 | 枯草芽孢杆菌 | 关节润滑剂 | 生产成本高 | 利用低成本碳源 | Vu等[ | |
化学制品 Chemical products | 1,3-丙二醇 | 大肠杆菌 | 聚酯纤维 | 底物转化率低 | 平衡合成途径中碳流分布 | Yang等[ |
| 琥珀酸 | 大肠杆菌 | 酸化剂 | pH敏感,副产物积累多 | 构建pH耐受菌株,沉默副产物代谢途径 | Yan等[ | |
| 抗生素 | 链霉菌 | 抗感染药物(青霉素) | 底物成本高,发酵周期长 | 重构代谢途径,低成本碳源生产 | Alam等[ |
| [1] | LAGIER J C, KHELAIFIA S, ALOU M T, et al. Culture of previously uncultured members of the human gut microbiota by culturomics[J]. Nature Microbiology, 2016, 1(12): 16203. |
| [2] | 陆 琼, 畅灵丽, 王江栓. 微生物菌种选育技术的探索[J]. 中国食品工业, 2023, 14: 87-89. |
| LU Q, CHANG L L, WANG J S. Exploration of microbial strain breeding techniques[J]. China Food Industry, 2023, 14: 87-89. (in Chinese) | |
| [3] | SOOD U, KUMAR R, HIRA P. Expanding culturomics from gut to extreme environmental settings[J]. Msystems, 2021, 6(4): e00848-21. |
| [4] | 艾 铄, 张丽杰, 肖芃颖, 等. 高通量测序技术在环境微生物领域的应用与进展[J]. 重庆理工大学学报(自然科学), 2018, 32(9): 111-121. |
| AI S, ZHANG L J, XIAO P Y, et al. Application and progress of high-throughput sequencing technology in the field of environmental microorganisms[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(9): 111-121. (in Chinese) | |
| [5] | BILEN M, DUFOUR J C, LAGIER J C, et al. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species[J]. Microbiome, 2018, 6(1): 94. |
| [6] | KOCH R. Zur Untersuchung Von Pathogenen Organismen[M]. Berlin: Norddeutschen Buchdruckerei und Verlagsanstalt, 1881. |
| [7] | REMENÁR M, KARELOVÁ E, HARICHOVÁ J, et al. Isolation of previously uncultivable bacteria from a nickel contaminated soil using a diffusion-chamber-based approach[J]. Applied Soil Ecology, 2015, 95: 115-127. |
| [8] | ARAYA M A, VALENZUELA T, INOSTROZA N G, et al. Isolation and characterization of cold-tolerant hyper-ACC-degrading bacteria from the rhizosphere, endosphere, and phyllosphere of Antarctic vascular plants[J]. Microorganisms, 2020, 8(11): 1788. |
| [9] | ZENGLER K, TOLEDO G, RAPPÉ M, et al. Cultivating the uncultured[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(24): 15681-15686. |
| [10] | KAEBERLEIN T, LEWIS K, EPSTEIN S S. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment[J]. Science, 2002, 296(5570): 1127-1129. |
| [11] | PARK J, KERNER A, BURNS M A, et al. Microdroplet-enabled highly parallel co-cultivation of microbial communities[J]. PLoS One, 2011, 6(2): e17019. |
| [12] | LAGIER J C, DUBOURG G, MILLION M, et al. Culturing the human microbiota and culturomics[J]. Nature Reviews Microbiology, 2018, 16(9): 540-550. |
| [13] | CHEN L, GAO W, TAN X, et al. MALDI-TOF MS is an effective technique to classify specific microbiota[J]. Microbiology Spectrum, 2023, 11(3): e00307-23. |
| [14] | SULAIMAN I M, MIRANDA N, SIMPSON S. MALDI-TOF mass spectrometry and 16S rRNA gene sequence analysis for the identification of foodborne Clostridium spp.[J]. Journal of AOAC International, 2021, 104(5): 1381-1388. |
| [15] | NAUD S, KHELAIFIA S, MBOGNING FONKOU M D, et al. Proof of concept of culturomics use of time of care[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 524769. |
| [16] | 王浩先, 陈 宇, 马 宁, 等. 应用培养组学分离鉴定牛源芽孢杆菌及其系统发育性分析[J]. 黑龙江八一农垦大学学报, 2022, 34(4): 37-45. |
| WANG H X, CHEN Y, MA N, et al. The analysis of bovine-derived spores and their system developmental properties identified by separation of culture histology[J]. Journal of Heilongjiang Bayi Agricultural University, 2022, 34(4): 37-45. (in Chinese) | |
| [17] | 赵梦伊, 刘安庆, 赵玉伟, 等. 基于培养组学和宏基因组学的血小板细菌检测方法研究[J]. 中国输血杂志, 2023, 36(11): 978-986. |
| ZHAO M Y, LIU A Q, ZHAO Y W, et al. Detection of platelet bacteria based on culturomics and metagenomics[J]. Chinese Journal of Blood Transfusion, 2023, 36(11): 978-986. (in Chinese) | |
| [18] | ABOU CHACRA L, BENATMANE A, IWAZA R, et al. Culturomics reveals a hidden world of vaginal microbiota with the isolation of 206 bacteria from a single vaginal sample[J]. Archives of Microbiology, 2024, 206(1): 20. |
| [19] | 刘月姣, 李俭杰, 孙一凡, 等. 利用培养组学技术分离培养肺部微生物群研究[J]. 微生物学报, 2022, 62(3): 1110-1118. |
| LIU Y J, LI J J, SUN Y F, et al. Isolation and cultivation of lung microbiota with culturomics[J]. Acta Microbiologica Sinica, 2022, 62(3): 1110-1118. (in Chinese) | |
| [20] | 句英娇, 王小通, 王隐瑜, 等. 宏基因组及培养组学技术在粪菌移植中的应用[J]. 生物工程学报, 2022, 38(10): 3594-3605. |
| JU Y J, WANG X T, WANG Y Y, et al. Application of metagenomic and culturomic technologies in fecal microbiota transplantation: A review[J]. Chinese Journal of Biotechnology, 2022, 38(10): 3594-3605. (in Chinese) | |
| [21] | 黄明星. 基于培养组学对肉鸡盲肠菌群分离及益生菌的筛选[D]. 南昌: 江西农业大学, 2022. |
| HUANG M X. Isolation of cecal microflora and screening of probiotics in broilers based on culturomics[D]. Nanchang: Jiangxi Agricultural University, 2022. (in Chinese) | |
| [22] | MAGDY WASFY R, MBAYE B, BORENTAIN P, et al. Ethanol-producing Enterocloster bolteae is enriched in chronic hepatitis B-associated gut dysbiosis: A case-control culturomics study[J]. Microorganisms, 2023, 11(10): 2437. |
| [23] | LI M, RAZA M, SONG S, et al. Application of culturomics in fungal isolation from mangrove sediments[J]. Microbiome, 2023, 11(1): 272. |
| [24] | POPE E, CARTMELL C, HALTLI B, et al. Microencapsulation and in situ incubation methodology for the cultivation of marine bacteria[J]. Frontiers in Microbiology, 2022, 13: 958660. |
| [25] | HEGAZI N A, SARHAN M S, FAYEZ M, et al. Plant-fed versus chemicals-fed rhizobacteria of lucerne: Plant-only teabags culture media not only increase culturability of rhizobacteria but also recover a previously uncultured Lysobacter sp., Novosphingobium sp. and Pedobacter sp.[J]. PLoS One, 2017, 12(7): e0180424. |
| [26] | NEGERI N G, NGUYEN D D A, MICHAEL M, et al. Multi-omic dereplication of antibiotic production by diffusion chamber isolated bacteria from Australian soils[J]. BioRxiv, 2025, 2025:667785. |
| [27] | CHABIB L, RUSTANDI T, FAWWAZI M H A F, et al. Harnessing iChip technology for novel antibiotic discovery from peat soil microbiomes to combat antimicrobial resistance[J]. Frontiers in Microbiology, 2025, 16: 1530273. |
| [28] | 梁怡萧, 潘建章, 方 群. 基于微流控技术的细胞水平高通量药物筛选系统的研究进展[J]. 色谱, 2021, 39(6): 567-577. |
| LIANG Y X, PAN J Z, FANG Q. Research advances of high-throughput cell-based drug screening systems based on microfluidic technique[J]. Chinese Journal of Chromatography, 2021, 39(6): 567-577. (in Chinese) | |
| [29] | MARTIN K, HENKEL T, BAIER V, et al. Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices[J]. Lab on a Chip, 2003, 3(3): 202-207. |
| [30] | JAROSZ D F, BROWN J C S, WALKER G A, et al. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism[J]. Cell, 2014, 158(5): 1083-1093. |
| [31] | TEREKHOV S S, SMIRNOV I V, MALAKHOVA M V, et al. Ultrahigh-throughput functional profiling of microbiota communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(38): 9551-9556. |
| [32] | QIAO Y, HU R, CHEN D, et al. Fluorescence-activated droplet sorting of PET degrading microorganisms[J]. Journal of Hazardous Materials, 2022, 424: 127417. |
| [33] | TAUZIN A S, PEREIRA M R, VAN VLIET L D, et al. Investigating host-microbiome interactions by droplet based microfluidics[J]. Microbiome, 2020, 8(1): 141. |
| [34] | NAKAMURA A, SUZUKI Y, HOMMA N, et al. Ultrahigh-throughput screening of environmental bacteria for proteolytic activity using droplet-based microfluidics[J]. Applied and Environmental Microbiology, 2025, 91(7): e00109-25. |
| [35] | 庄琪琛, 宁芮之, 麻 远, 等. 微流控技术应用于细胞分析的研究进展[J]. 分析化学, 2016, 44(4): 522-532. |
| ZHUANG Q C, NING R Z, MA Y, et al. Recent development in microfluidic chips for in vitro cell-based research[J]. Chinese Journal of Analytical Chemistry, 2016, 44(4): 522-532. (in Chinese) | |
| [36] | 李斌斌, 吴丹妮, 聂国兴, 等. 未/难培养微生物可培养策略研究:机遇与挑战[J]. 微生物学通报, 2023, 50(2): 832-844. |
| LI B B, WU D N, NIE G X, et al. Isolation and culture techniques of uncultured microorganisms: Challenges and opportunities[J]. Microbiology China, 2023, 50(2): 832-844. (in Chinese) | |
| [37] | 叶姜瑜, 罗固源. 微生物可培养性低的生态学释因与对策[J]. 微生物学报, 2005, 45(3): 478-482. |
| YE J Y, LUO G Y. Ecological interpretation and related strategies for low culturability of microorganisms[J]. Acta Microbiologica Sinica, 2005, 45(3): 478-482. (in Chinese) | |
| [38] | LI J, XIAO X, ZHOU M, et al. Strategy for the adaptation to stressful conditions of the novel isolated conditional Piezophilic strain Halomonas titanicae ANRCS81[J]. Applied and Environmental Microbiology, 2023, 89(3): e01304-22. |
| [39] | HARDER W, DIJKHUIZEN L. Physiological responses to nutrient limitation[J]. Annual Review of Microbiology, 1983, 37(1): 1-23. |
| [40] | 周 楠, 姜成英, 刘双江. 从环境中分离培养微生物:培养基营养水平至关重要[J]. 微生物学通报, 2016, 43(5): 1075-1081. |
| ZHOU N, JIANG C Y, LIU S J. Cultivation of microorganisms from environments: Nutrient level of the culture medium is of great importance[J]. Microbiology China, 2016, 43(5): 1075-1081. (in Chinese) | |
| [41] | IMACHI H, NOBU M K, NAKAHARA N, et al. Isolation of an archaeon at the prokaryote-eukaryote interface[J]. Nature, 2020, 577(7791): 519-525. |
| [42] | JUNG D, MACHIDA K, NAKAO Y, et al. Cultivation of previously uncultured sponge-associated bacteria using advanced cultivation techniques: A perspective on possible key mechanisms[J]. Frontiers in Marine Science, 2022, 9: 963277. |
| [43] | LIU S, YU Z, ZHONG H, et al. Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle[J]. Microbiome, 2023, 11(1): 76. |
| [44] | JI S, ZHAO R, YIN Q, et al. Gel microbead cultivation with a subenrichment procedure can yield better bacterial cultivability from a seawater sample than standard plating method[J]. Journal of Ocean University of China, 2012, 11(1): 45-51. |
| [45] | BÖRNER R A, ALIAGA M T A, MATTIASSON B. Microcultivation of anaerobic bacteria single cells entrapped in alginate microbeads[J]. Biotechnology Letters, 2013, 35(3): 397-405. |
| [46] | EUN Y J, UTADA A S, COPELAND M F, et al. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation[J]. ACS Chemical Biology, 2011, 6(3): 260-266. |
| [47] | ZANG E, BRANDES S, TOVAR M, et al. Real-time image processing for label-free enrichment of actinobacteria cultivated in picolitre droplets[J]. Lab on a Chip, 2013, 13(18): 3707-3713. |
| [48] | ESPINA L. An approach to increase the success rate of cultivation of soil bacteria based on fluorescence-activated cell sorting[J]. PLoS One, 2020, 15(8): e0237748. |
| [49] | JIAN X, GUO X, WANG J, et al. Microbial microdroplet culture system (MMC): An integrated platform for automated, high-throughput microbial cultivation and adaptive evolution[J]. Biotechnology and Bioengineering, 2020, 117(6): 1724-1737. |
| [50] | BEN-DOV E, KRAMARSKY-WINTER E, KUSHMARO A. An in situ method for cultivating microorganisms using a double encapsulation technique: In situ method for cultivating microorganisms[J]. FEMS Microbiology Ecology, 2009, 68(3): 363-371. |
| [51] | GAO W, NAVARROLI D, NAIMARK J, et al. Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota[J]. Microbiome, 2013, 1(1): 4. |
| [52] | YAN S, QIU J, GUO L, et al. Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level[J]. Applied Microbiology and Biotechnology, 2021, 105(4): 1315-1331. |
| [53] | LIU B, LIU K, WANG N, et al. Laser tweezers Raman spectroscopy combined with deep learning to classify marine bacteria[J]. Talanta, 2022, 244: 123383. |
| [54] | CROSS K L, CAMPBELL J H, BALACHANDRAN M, et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics[J]. Nature biotechnology, 2019, 37(11): 1314-1321. |
| [55] | GAO J, DU M, ZHAO J, et al. Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction[J]. Metabolic Engineering, 2022, 73: 144-157. |
| [56] | NIELSEN J, KEASLING J D. Engineering cellular metabolism[J]. Cell, 2016, 164(6): 1185-1197. |
| [57] | 赵东东, 宗 媛, 尹 蕾, 等. 基因组编辑技术及未来发展[J]. 生命科学, 2021, 33(12): 1462-1468. |
| ZHAO D D, ZONG Y, YIN L, et al. Genome editing technology and future development[J]. Chinese Bulletin of Life Sciences, 2021, 33(12): 1462-1468. (in Chinese) | |
| [58] | 胥健萍, 王 颖, 李 春, 等. 微生物细胞工厂中代谢途径动态调控策略与网络构建[J]. 化工进展, 2022, 41(12): 6511-6521. |
| XU J P, WANG Y, LI C, et al. Dynamic regulation strategies and network construction of metabolic pathways in microbial cell factories[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6511-6521. (in Chinese) | |
| [59] | MAO J, ZHANG H, CHEN Y, et al. Relieving metabolic burden to improve robustness and bioproduction by industrial microorganisms[J]. Biotechnology Advances, 2024, 74: 108401. |
| [60] | 杨永富, 耿碧男, 宋皓月, 等. 合成生物学时代基于非模式细菌的工业底盘细胞研究现状与展望[J]. 生物工程学报, 2021, 37(3): 874-910. |
| YANG Y F, GENG B N, SONG H Y, et al. Progress and perspective on development of non-model industrial bacteria as chassis cells for biochemical production in the synthetic biology era[J]. Chinese Journal of Biotechnology, 2021, 37(3): 874-910. (in Chinese) | |
| [61] | RO D K, PARADISE E M, OUELLET M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
| [62] | BARBACKA K, BAER-DUBOWSKA W. Searching for artemisinin production improvement in plants and microorganisms[J]. Current Pharmaceutical Biotechnology, 2011, 12(11): 1743-1751. |
| [63] | WU C F, YANG J Y, WANG F, et al. Resveratrol: Botanical origin, pharmacological activity and applications[J]. Chinese Journal of Natural Medicines, 2013, 11(1): 1-15. |
| [64] | LIU X, DING W, JIANG H. Engineering microbial cell factories for the production of plant natural products: From design principles to industrial-scale production[J]. Microbial Cell Factories, 2017, 16(1): 125. |
| [65] | CHO N R, PARK M S, LEE D H, et al. Method of producing lycopene using recombinant Esherichia coli : US8828697B2[P]. 2014-09-09. |
| [66] | LIU N, QIAO K, STEPHANOPOULOS G. 13C metabolic flux analysis of acetate conversion to lipids by Yarrowia lipolytica [J]. Metabolic Engineering, 2016, 38: 86-97. |
| [67] | LIN P, ZHANG L, DU G, et al. Construction of Saccharomyces cerevisiae platform strain for the biosynthesis of carotenoids and apocarotenoids[J]. Journal of Agricultural and Food Chemistry, 2025, 73(15): 9187-9196. |
| [68] | ZHAO D, ZHU X, ZHOU H, et al. CRISPR-based metabolic pathway engineering[J]. Metabolic Engineering, 2021, 63: 148-159. |
| [69] | LUAN G, QI Y, WANG M, et al. Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories[J]. Biotechnology for Biofuels, 2015, 8(1): 184. |
| [70] | BORDEN J R, PAPOUTSAKIS E T. Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum [J]. Applied and Environmental Microbiology, 2007, 73(9): 3061-3068. |
| [71] | ENE N, SOARE VLADU M G, LUPESCU I, et al. The production of biodegradable polymers-medium-chain-length polyhydroxyalkanoates (mcl-PHA) in Pseudomonas putida for biomedical engineering applications[J]. Current Pharmaceutical Biotechnology, 2022, 23(8): 1109-1117. |
| [72] | YANG Z, YIN G, SUN S, et al. Medical applications and prospects of polylactic acid materials[J]. iScience, 2024, 27(12): 111512. |
| [73] | VU D G, VAN DO T C, THI L M D, et al. Enhanced hyaluronic acid production from Priestia flexa N7 isolates[J]. Biomedical and Biotechnology Research Journal, 2024, 8(1): 19-26. |
| [74] | YANG B, LIANG S, LIU H, et al. Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol[J]. Bioresource Technology, 2018, 267: 599-607. |
| [75] | YAN D, WANG C, ZHOU J, et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value[J]. Bioresource Technology, 2014, 156: 232-239. |
| [76] | ALAM K, MAZUMDER A, SIKDAR S, et al. Streptomyces: The biofactory of secondary metabolites[J]. Frontiers in Microbiology, 2022, 13: 968053. |
| [77] | THAK E J, YOO S J, MOON H Y, et al. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins[J]. FEMS Yeast Research, 2020, 20(2): foaa009. |
| [78] | ATSUMI S, LIAO J C. Metabolic engineering for advanced biofuels production from Escherichia coli [J]. Current Opinion in Biotechnology, 2008, 19(5): 414-419. |
| [79] | SCOWN C D, KEASLING J D. Sustainable manufacturing with synthetic biology[J]. Nature Biotechnology, 2022, 40(3): 304-307. |
| [80] | PAREDES-BARRADA M, KOPSIAFTIS P, CLAASSENS N J, et al. Parageobacillus thermoglucosidasius as an emerging thermophilic cell factory[J]. Metabolic Engineering, 2024, 83: 39-51. |
| [81] | YAN X, BAO W, WU Y, et al. Paradigm of engineering recalcitrant non-model microorganism with dominant metabolic pathway as a biorefinery chassis[J]. Nature Communications, 2024, 15(1): 10441. |
| [82] | DING T, LIANG Z, YANG Y, et al. Rapidly engineering an osmotic-pressure-tolerant gut bacterium for efficient non-sterile production of bulk chemicals[J]. Chemical Engineering Journal, 2024, 491: 152076. |
| [83] | XU S, HAN R, TAO L, et al. Newly isolated halotolerant Gordonia terrae S-LD serves as a microbial cell factory for the bioconversion of used soybean oil into polyhydroxybutyrate[J]. Biotechnology for Biofuels and Bioproducts, 2025, 18(1): 15. |
| [84] | ZHAO Y, WANG Z, WANG Q, et al. Efficient transformation and genome editing in a nondomesticated, biocontrol strain, Bacillus subtilis GLB191[J]. Phytopathology Research, 2024, 6(1): 69. |
| [85] | NOGALES J, MUELLER J, GUDMUNDSSON S, et al. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities[J]. Environmental Microbiology, 2020, 22(1): 255-269. |
| [86] | PARKS D H, RINKE C, CHUVOCHINA M, et al. Recovery of nearly 8 000 metagenome-assembled genomes substantially expands the tree of life[J]. Nature Microbiology, 2017, 2(11): 1533-1542. |
| [87] | STAMS A J M, PLUGGE C M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology, 2009, 7(8): 568-577. |
| [88] | LI T, SHI X, WANG J, et al. Turning antagonists into allies: Bacterial-fungal interactions enhance the efficacy of controlling Fusarium wilt disease[J]. Science Advances, 2025, 11(7): eads5089. |
| [89] | ZENGLER K, ZARAMELA L S. The social network of microorganisms—How auxotrophies shape complex communities[J]. Nature Reviews Microbiology, 2018, 16(6): 383-390. |
| [90] | YANG L, YAO B, ZHANG S, et al. Division mechanism of labor in Diqing Tibetan pigs gut microbiota for dietary fiber efficiently utilization[J]. Microbiological Research, 2025, 290: 127977. |
| [91] | 范定坤, 张吉贤, 付域泽, 等. 反刍动物瘤胃微生物培养组学研究进展[J]. 畜牧兽医学报, 2024, 55(1): 51-58. |
| FAN D K, ZHANG J X, FU Y Z, et al. Research progress of ruminant microbial culturomics[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 51-58. (in Chinese) | |
| [92] | CHENG A G, HO P Y, ARANDA-DÍAZ A, et al. Design, construction, and in vivo augmentation of a complex gut microbiome[J]. Cell, 2022, 185(19): 3617-3636. e19. |
| [93] | CHEN S, LIU Q, LI D. Synthetic microbial community enhances lignocellulose degradation at the composting thermophilic phase: Metagenomic and metabolic pathway insights[J].Chemical Engineering Journal, 2025,520: 165847. |
| [94] | ZHANG M, SHI S, FENG Y, et al. Synthetic microbial community improves chicken intestinal homeostasis and provokes anti-Salmonella immunity mediated by segmented filamentous bacteria[J]. The ISME Journal, 2025, 19(1): wraf076. |
| [95] | ZHOU Z, YANG M, FANG H, et al. Tailoring a functional synthetic microbial community alleviates Fusobacterium nucleatum-infected colorectal cancer via ecological control[J]. Advanced Science, 2025,12(31):e14232. |
| [1] | Changchang LI, Yinglian WU, Zhenxiang YANG, Lingui LI, Rongyan QIN, Yanfeng LIU, Guishan XU, Wenqi WANG, Qiyu DIAO. Effects of Suaeda salsa Extract on Rumen Fermentation Parameters and Gastrointestinal Microbiota Community Structure of Hu Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(2): 749-760. |
| [2] | DANG Danqi, KONG Xiaohui, TIAN Haoliang, LIAN Hongxia, GAO Tengyun, ZHANG Liangyu, ZHANG Liyang, FU Tong. Effects of Peanut Vine Compound Extruded Feed on Growth Performance, Rumen Fermentation and Microbial Composition of Fattening Hu Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(9): 4082-4093. |
| [3] | PANG Xiaotong, KUANG Yu, GENG Mingyang, NAN Shanshan, MA Xiaoxue, WEI Xin, XIE Song, NIE Cunxi. Effect of Compound Enzyme Preparation on Nutrient Digestibility, Milk Composition, Rumen Fermentation Parameters and Bacterial Flora of Periparturient Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(8): 3607-3619. |
| [4] | HE Hang, HUANG Yuzhi, XIANG Bangquan, HAO Yongfeng, LIU Xingyu, ZHANG Jie, PENG Jinjin. Effects of Yeast Peptide on Immunity Function, Digestive Performance and Intestinal Microorganisms of Sichuan White Geese [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(8): 3661-3671. |
| [5] | JI Yifan, SHI Lei, CHEN Yifan, LIU Zhe, YUAN Wen, ZHENG Xu, LI Yanhui, MA Lifeng, SU Dan, YE Renliang, SU Bofei, CHEN Hui. Effects of 405 nm Spectrally Synergistic TiO2-based LED Light Sources on Production Performance,Health and House Microbiology of Laying Hens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2675-2683. |
| [6] | CAO Chang, LI Yulian, WANG Jie, HE Qing, GONG Yanmei, FAN Zhiyong. Effects of Adding Hyocholic Acid on Body Lipid Metabolism,Intestinal Microorganisms and Bile Acid Metabolism in High-fat Pregnant Mice [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 1999-2011. |
| [7] | YUAN Qing, MENG Ru, LI Guoping, ZHANG Rui. Advances in Application of CRISPR-Cas Technology in the Detection of Animal Pathogenic Microorganisms [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 545-553. |
| [8] | JIA Qianru, LUO Xuan, TIAN Tian, WANG Lei, MA Yuhong, SHANG Yuejun, XU Fafang, MO Huashan, WU Guofang. Effects of Crossbreeding on Meat Quality and Regulatory Mechanism of Local Pig Breeds and Introduced Pig Breeds [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(12): 5762-5771. |
| [9] | ZHANG Yan, MA Sen, LI Shouren, HUANGFU Weikang, LA Shaokai, MA Jixiang, WANG Zhichang, SHI Yinghua. Effects of Alfalfa Saponin Extract on Immunity,Antioxidant Capacity and Rumen Microflora of Weaned Hu Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(7): 2799-2809. |
| [10] | ZHANG Junhao, KUANG Lei, LEI Yifei, ZHAO Tianrui, XU Haojun, CHEN Bin, WANG Dan, WEI Yangfei, HONG Deng, HU Changmin. Application of Immunomagnetic Separation Technology in the Detection of Pathogenic Microorganisms [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(5): 2219-2227. |
| [11] | MA Xiaoxue, LONG Rui, NIU Yujie, GUO Hongyong, LUO Ruiqing, WU Yanyan, ZHANG Wenju. Effect of Adding Isoacids in Perinatal Diet on Rumen Fermentation Parameters, Rumen Microorganisms and Production Performance of Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1428-1437. |
| [12] | LI Jing, YAN Xia, CHEN Peng, WANG Chunlan, GUO Zhaowen, LUO Xuehui, DONG Shangzhi, JI Jian, LIU Shen, LUO Chenglong. Research Progress on the Influence of Gut and Reproductive Tract Microorganisms on Hatchability in Hens [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1613-1621. |
| [13] | ZHENG Jieyi, YANG Shuli, ZHAO Kailing, GONG Li, LI Chuan. Effects of Heat Stress on Rumen Function and Potential Heat Tolerance Markers in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 1041-1049. |
| [14] | WANG Yuanlang, QI Pingping, DING Haisheng, ZHAO Huiling, HUANG Dongwei. Analysis of Microbial Colony Diversity in Cecum of Wannan Yellow Rabbits for Different Residual Feed Intake Based on the 16S rDNA Sequencing [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 549-557. |
| [15] | MA Jing, DENG Jiahan, WANG Juze, YANG Zhimei, LI Xuefeng, ZAN Linsen. Effects of Grape Seed Proanthocyanidins on Growth Performance,Serum Biochemical Indices,and Rumen Environment of Beef Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(12): 5290-5301. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||