China Animal Husbandry & Veterinary Medicine ›› 2026, Vol. 53 ›› Issue (2): 532-542.doi: 10.16431/j.cnki.1671-7236.2026.02.002
• Review • Previous Articles Next Articles
GUO Zhihan1(
), LI Yang1, WANG Shaoxiong2, HAN Zhiqiang1, LI Xiao1, CUI Bingbing3, LYU Jie4, ZHANG Guanglei5, XU Chao1(
)
Revised:2025-10-08
Online:2026-02-20
Published:2026-01-28
Contact:
XU Chao
E-mail:gzhtx0503@163.com;xcjlau@163.com
CLC Number:
GUO Zhihan, LI Yang, WANG Shaoxiong, HAN Zhiqiang, LI Xiao, CUI Bingbing, LYU Jie, ZHANG Guanglei, XU Chao. Research Progress on in vitro Culture of Preantral Follicles in Ruminants[J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(2): 532-542.
Table 1
In vitro culture of preantral follicle in ruminants"
物种 Species | 培养方式 Culture method | 培养时间 Culture time/d | 特殊处理 Special treatment | 培养基及添加剂 Medium and Supplements | 结果 Results | 参考文献 References |
|---|---|---|---|---|---|---|
牛 Cattle | 原位 | 7 | 3种基础培养基比较 | α-MEM、TCM199、McCoy’s 5A、HEPPS、谷氨酰胺、胰岛素、转铁蛋白、硒、抗坏血酸、青霉素、链霉素 | α-MEM、TCM199、McCoy’s 5A培养基中正常形态卵泡占比分别为48%、39%和44%,发育卵泡占比分别为39%、26%和26% | Jimenez等[ |
| 7 | 41 ℃下12 h后38.5 ℃培养至结束 | TCM199、谷氨酰胺、次黄嘌呤、牛血清白蛋白、胰岛素、转铁蛋白、硒、抗坏血酸 | 对照组和热应激组中正常形态卵泡占比分别为52.55%和40.97%,生长卵泡占比92.31%和90.91% | Paes等[ | ||
| 6 | 添加10 ng/mL TNF-α或10 ng/mL地塞米松 | α-MEM、胰岛素转铁蛋白硒、谷氨酰胺、次黄嘌呤、牛血清白蛋白、青霉素、链霉素 | 对照组、添加TNF-α和地塞米松组中卵母细胞凋亡率分别为43.90%、56.25%和47.61%,颗粒细胞凋亡率分别为6.85%、26.99%和16.66% | Silva等[ | ||
山羊 Goat | 原位 | 18 | FSH培养8 d后,添加FGF-10继续培养8 d(FSH-FGF-10) | α-MEM、谷氨酰胺、次黄嘌呤、牛血清白蛋白、胰岛素转铁蛋白硒、抗坏血酸 | α-MEM或FSH-FGF-10培养基中正常卵泡占比分别为28.67%和70.67%,生长卵泡占比38.71%和68.80%,卵泡直径分别为27.47和27.09 μm,卵母细胞直径分别为18.83和18.84 μm | Almeida等[ |
| 7 | 添加0~10 ng/mL皮质醇 | α-MEM、谷氨酰胺、次黄嘌呤、牛血清白蛋白、胰岛素、转铁蛋白、硒 | 含0、1、5、10 ng/mL皮质醇组中卵泡平均直径分别为30.62、31.72、29.71和26.77 μm,卵母细胞平均直径分别为19.44、19.37、17.94和17.72 μm | Ponies等[ | ||
绵羊 Sheep | 原位 | 7 | 添加0~100 μg/mL EGCG | α-MEM、谷氨酰胺、次黄嘌呤、胰岛素、转铁蛋白、硒、牛血清白蛋白、抗坏血酸 | α-MEM培养基及含0.01、0.1、1、10、100 μg/mL EGCG组中卵泡平均直径分别为40.89、37.15、39.09、48.17、44.39和40.74 μm,卵母细胞直径分别为27.24、25.10、26.07、31.36、30.81和27.02 μm | Barberino 等[ |
牛 Cattle | 2D | 7 | 38.5 ℃ 16 h与41 ℃ 8 h交替培养 | α-MEM、丙酮酸钠、非必需氨基酸,胰岛素、转铁蛋白、硒、人重组促卵泡素、人重组激活素A、牛血清白蛋白、抗坏血酸、青霉素、链霉素 | 对照组或热应激组中平均直径分别增加10.6和5.4 μm,相对于初始直径平均增加13.9%和7.6%,卵泡直径相对增加66.0%和52.4% | de Aguiar等[ |
山羊 Goat | 2D | 12 | 以0.1、0.2、0.4 mg/mL巴西良木豆提取物作为培养基 | α-MEM、谷氨酰胺、胰岛素、转铁蛋白、硒、次黄嘌呤、抗坏血酸 | α-MEM及0.1、0.2、0.4 mg/mL巴西良木豆提取物组中卵母细胞成熟率分别为42.22%、16.20%、30.95%和7.50%,α-MEM+FSH或0.2 mg/mL AB+FSH组中卵母细胞成熟率分别为44.0%和42.5% | Gouveia等[ |
| 18 | 添加10 μg/mL重组人胰岛素、100 ng/mL重组牛FSH | α-MEM、谷氨酰胺、转铁蛋白、硒、次黄嘌呤、牛血清白蛋白、抗坏血酸、生长激素 | 卵泡日均增长11.4 μm,卵泡平均直径为426.0 μm,卵母细胞平均直径为124.45 μm | Ferreira 等[ | ||
| 18 | 添加10、15、100 mIU/mL重组人FSH | α-MEM、谷氨酰胺、人重组胰岛素、转铁蛋白、硒、牛血清白蛋白、次黄嘌呤、抗坏血酸 | 对照组及含10、50、100 mIU/mL重组人FSH组中卵泡平均直径分别为571.9、569.8、621.3和486.3 μm,卵母细胞完全生长率(>110 μm)分别为13.8%、5.3%、8.9%和6.9% | Ferreira 等[ | ||
绵羊 Sheep | 2D | 12 | 添加1 μmol/L山柰酚 | α-MEM、谷氨酰胺、胰岛素、装铁蛋白、硒、次黄嘌呤、牛血清白蛋白、抗坏血酸 | 添加1 μmol/L山柰酚和含抗氧化剂组中卵母细胞进入第一次减数分裂比例分别为11.54%和4.54% | Santos 等[ |
| 18 | 添加0.025 mol/L乳糖 | α-MEM、牛血清白蛋白、胰岛素、谷氨酰胺、次黄嘌呤、转铁蛋白、硒、抗坏血酸 | 在α-MEM或含0.025 mol/L乳糖培养基中形态正常卵泡分别为75.55%和92.50%,卵母细胞减数分裂率为48.20%和54.50% | Andrade 等[ | ||
| 牛Cattle | 2D | 18 | 添加5、10 ng/mL或5、10 μg/mL胰岛素 | HEPE缓冲液、谷氨酰胺、转铁蛋白、硒、牛血清白蛋白、抗坏血酸、激活素A | 添加5、10 ng/mL和5、10 μg/mL组中卵泡存活率分别为76.9%、94.2%、73.1%和71.1%,卵泡日平均生长大小分别为3.92、4.41、2.16和2.17 μm | Rossetto 等[ |
| 牛Cattle | 3D | 18 | 添加100 ng/mL FSH | HEPES缓冲液、谷氨酰胺、转铁蛋白、硒、牛血清白蛋白、抗坏血酸、激活素A | 对照组和100 ng/mL FSH组中卵泡存活率分别为72.2%和92.6%,卵泡日平均生长大小分别为4.28和8.63 μm | Rossetto 等[ |
绵羊 Sheep | 3D | 8 | 1%、2%藻酸盐包裹分离卵泡;玻璃化冷冻卵巢皮质,2%藻酸盐包裹玻璃化冷冻卵泡 | α-MEM、胰岛素转铁蛋白硒、FSH、生长分化因子-9 | 1%、2%藻酸盐组中包裹卵泡平均存活率分别为57.3%和41.8%,平均直径分别为41.9和54.06 μm;新鲜组或玻璃化冷冻组中卵泡平均活力分别为74.3%和65.1%,2%藻酸盐包裹新鲜或玻璃化冷冻卵泡平均活力为79.0%和60.6% | Sadeghnia 等[ |
| [1] | SCHVTZ L F, BATALHA I M. Granulosa cells: Central regulators of female fertility[J]. Endocrines, 2024, 5(4): 547-565. |
| [2] | NASCIMENTO D R, BARBALHO E C, BARROZO L G, et al. The mechanisms that control the preantral to early antral follicle transition and the strategies to have efficient culture systems to promote their growth in vitro [J]. Zygote, 2023, 31(4): 305-315. |
| [3] | CASARINI L, PARADISO E, LAZZARETTI C, et al. Regulation of antral follicular growth by an interplay between gonadotropins and their receptors[J]. Journal of Assisted Reproduction and Genetics, 2022, 39(4): 893-904. |
| [4] | CORTVRINDT R, SMITZ J. In vitro follicle growth: Achievements in mammalian species [J]. Reproduction in Domestic Animals, 2001, 36(1): 3-9. |
| [5] | EPPIG J J, O’BRIEN M J. Development in vitro of mouse oocytes from primordial follicles [J]. Biology of Reproduction, 1996, 54(1): 197-207. |
| [6] | O’BRIEN M J, PENDOLA J K, EPPIG J J. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence [J]. Biology of Reproduction, 2003, 68(5): 1682-1686. |
| [7] | GUPTA P, RAMESH H, MANJUNATHA B, et al. Production of buffalo embryos using oocytes from in vitro grown preantral follicles [J]. Zygote, 2008, 16(1): 57-63. |
| [8] | MAGALHAES D, DUARTE A, ARAUJO V, et al. In vitro production of a caprine embryo from a preantral follicle cultured in media supplemented with growth hormone [J]. Theriogenology, 2011, 75(1): 182-188. |
| [9] | ARUNAKUMARI G, SHANMUGASUNDARAM N, RAO V. Development of morulae from the oocytes of cultured sheep preantral follicles[J]. Theriogenology, 2010, 74(5): 884-894. |
| [10] | SARTORI R, CONSENTINI C E C, ALBES R, et al. Manipulation of follicle development to improve fertility of cattle in timed-artificial insemination programs[J]. Animal, 2023, 17: 100769. |
| [11] | MORTON A J, CANDELARIA J I, MCDONNELL S P, et al. Roles of follicle-stimulating hormone in preantral folliculogenesis of domestic animals: What can we learn from model species and where do we go from here?[J]. Animal, 2023, 17: 100743. |
| [12] | LODDE V, MONFERINI N, PLEVRIDI M, et al. Approaches to in vitro oocyte growth in domestic farm mammals: How and why?[J]. Animal Reproduction, 2025, 22(3): e20250090. |
| [13] | DEL BIANCO D, GENTILE R, SALLICANDRO L, et al. Electro-metabolic coupling of cumulus-oocyte complex[J]. International Journal of Molecular Sciences, 2024, 25(10): 5349. |
| [14] | ZHENG M, ANDERSEN C Y, RASMUSSEN F R, et al. Expression of genes and enzymes involved in ovarian steroidogenesis in relation to human follicular development[J]. Frontiers in Endocrinology, 2023, 14: 1268248. |
| [15] | BRAW-TAL R, YOSSEFI S. Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary [J]. Reproduction, 1997, 109(1): 165-171. |
| [16] | SAHA S, SHIMIZU M, GESHI M, et al. Comparison of enzymatic and mechanical methods for the collection of bovine preantral follicles [J]. Animal Science, 2002, 74(1): 155-161. |
| [17] | LUCCI C M, AMORIM C A, BAO S N, et al. Effect of the interval of serial sections of ovarian tissue in the tissue chopper on the number of isolated caprine preantral follicles [J]. Animal Reproduction Science, 1999, 56(1): 39-49. |
| [18] | AMORIM C, RODRIGUES A P R, LUCCI C M, et al. Effect of sectioning on the number of isolated ovine preantral follicles [J]. Small Ruminant Research, 2000, 37(3): 269-277. |
| [19] | LUCCI C M, RUMPF R, FIGUEIREDO J R, et al. Zebu (Bos indicus) ovarian preantral follicles: Morphological characterization and development of an efficient isolation method [J]. Theriogenology, 2002, 57(5): 1467-1483. |
| [20] | FIGUEIREDO J R, HULSHOF S, VAN DEN HURK R, et al. Development of a combined new mechanical and enzymatic method for the isolation of intact preantral follicles from fetal, calf and adult bovine ovaries [J]. Theriogenology, 1993, 40(4): 789-799. |
| [21] | SANTOS S, BIONDI F, CORDEIRO M, et al. Isolation, follicular density, and culture of preantral follicles of buffalo fetuses of different ages [J]. Animal Reproduction Science, 2006, 95(1-2): 1-15. |
| [22] | SHARMA G T, DUBEY P K, MEUR S. Effect of different mechanical isolation techniques on developmental competence and survival of buffalo ovarian preantral follicles [J]. Livestock Science, 2009, 123(2-3): 300-305. |
| [23] | GUTIERREZ C G, RALPH J H, TELFER E E, et al. Growth and antrum formation of bovine preantral follicles in long-term culture in vitro [J]. Biology of Reproduction, 2000, 62(5): 1322-1328. |
| [24] | TAMILMANI G, RAO B, VAGDEVI R, et al. Nuclear maturation of ovine oocytes in cultured preantral follicles [J]. Small Ruminant Research, 2005, 60(3): 295-305. |
| [25] | ROY S K, GREENWALD G S. Methods of separation and in vitro culture of pre-antral follicles from mammalian ovaries [J]. Human Reproduction Update, 1996, 2(3): 236-245. |
| [26] | KURVILA A. Cloning and sequencing of FSH receptor gene from buffalo preantral follicles[D]. Izatnagar:Deemed University, 2007. |
| [27] | NICOSIA S V, EVANGELISTA I, BATTA S K. Rabbit ovarian follicles. Isolation technique and characterization at different stages of development [J]. Biology of Reproduction, 1975, 13(4): 423-447. |
| [28] | MURUVI W, PICTON H, RODWAY R, et al. In vitro growth and differentiation of primary follicles isolated from cryopreserved sheep ovarian tissue [J]. Animal Reproduction Science, 2009, 112(1-2): 36-50. |
| [29] | LE B A M, NGUYEN L B L, NGUYEN P T, et al. Enzymatic isolation of porcine preantral follicles impairs oocyte viability and long-term in vitro growth[J]. Journal of Reproduction and Development, 2025, 71(3): 124-136. |
| [30] | ROY S K, GREENWALD G S. An enzymatic method for dissociation of intact follicles from the hamster ovary: Histological and quantitative aspects[J]. Biology of Reproduction, 1985, 32(1): 203-215. |
| [31] | NOBREGA JR J E DA, GONCALVES P B D, CHAVES R N, et al. Leukemia inhibitory factor stimulates the transition of primordial to primary follicle and supports the goat primordial follicle viability in vitro [J]. Zygote, 2012, 20(1): 73-78. |
| [32] | GUERREIRO D D, LIMA L F D, RODRIGUES G Q, et al. In situ cultured preantral follicles is a useful model to evaluate the effect of anticancer drugs on caprine folliculogenesis [J]. Microscopy Research and Technique, 2016, 79(8): 773-781. |
| [33] | PELUSO J, HIRSCHEL M. Factors controlling the growth of bovine primary and preantral follicles in perifusion culture [J]. Theriogenology, 1988, 30(3): 537-546. |
| [34] | TANG K, YANG W C, LI X, et al. GDF-9 and bFGF enhance the effect of FSH on the survival, activation, and growth of cattle primordial follicles [J]. Animal Reproduction Science, 2012, 131(3-4): 129-134. |
| [35] | BERTOLDO M J, DUFFARD N, BERNARD J, et al. Effects of bone morphogenetic protein 4 (BMP4) supplementation during culture of the sheep ovarian cortex [J]. Animal Reproduction Science, 2014, 149(3-4): 124-134. |
| [36] | LIMA I, CELESTINO J, FAUSTINO L, et al. Dynamic medium containing kit ligand and follicle-stimulating hormone promotes follicular survival, activation, and growth during long-term in vitro culture of caprine preantral follicles [J]. Cells Tissues Organs, 2012, 195(3): 260-271. |
| [37] | MCLAUGHLIN M, TELFER E E. Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system [J]. Reproduction, 2010, 139(6): 971-978. |
| [38] | JIMENEZ C R, ARAÚJO V R, PENITENTE-FILHO J M, et al. The base medium affects ultrastructure and survival of bovine preantral follicles cultured in vitro [J]. Theriogenology, 2016, 85(6): 1019-1029. |
| [39] | OLIVEIRA C P, SOUSA F C, SILVA A L, et al. Heat stress in dairy cows: Impacts, identification, and mitigation strategies—A review[J]. Animals, 2025, 15(2): 249. |
| [40] | PAES V, VIEIRA L, CORREIA H, et al. Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus-oocyte complex [J]. Theriogenology, 2016, 86(4): 994-1003. |
| [41] | SILVA J R V, LIMA F E O, SOUZA A L P, et al. Interleukin-1β and TNF-α systems in ovarian follicles and their roles during follicular development, oocyte maturation and ovulation[J]. Zygote, 2020, 28(4): 270-277. |
| [42] | SILVA A, RIBEIRO R, MENEZES V, et al. Expression of TNF-α system members in bovine ovarian follicles and the effects of TNF-α or dexamethasone on preantral follicle survival, development and ultrastructure in vitro [J]. Animal Reproduction Science, 2017, 182: 56-68. |
| [43] | ALMEIDA A P, MAGALHÃES-PADILHA D D M, ARAUJO V R, et al. Effect of sequential medium with fibroblast growth factor-10 and follicle stimulating hormone on in vitro development of goat preantral follicles [J]. Animal Reproduction Science, 2015, 152: 32-38. |
| [44] | EDIRISINGHE O, TERNIER G, ALRAAWI Z, et al. Decoding FGF/FGFR signaling: Insights into biological functions and disease relevance[J]. Biomolecules, 2024, 14(12): 1622. |
| [45] | CASTILHO A C S, PRICE C A, DALANEZI F, et al. Evidence that fibroblast growth factor 10 plays a role in follicle selection in cattle[J]. Reproduction, Fertility and Development, 2017, 29(2): 234-243. |
| [46] | PONTES J T, MASIDE C, LIMA L F, et al. Immunolocalization for glucocorticoid receptor and effect of cortisol on in vitro development of preantral follicles [J]. Veterinary and Animal Science, 2019, 7: 100060. |
| [47] | NAN W, ZHONGHANG X, KEYAN C, et al. Epigallocatechin-3-gallate reduces neuronal apoptosis in rats after middle cerebral artery occlusion injury via PI3K/Akt/eNOS signaling pathway [J]. BioMed Research International, 2018, 2018(1): 6473580. |
| [48] | BARBERINO R, SANTOS J, LINS T, et al. Epigallocatechin-3-gallate (EGCG) reduces apoptosis of preantral follicles through the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathway after in vitro culture of sheep ovarian tissue[J]. Theriogenology, 2020, 155: 25-32. |
| [49] | YU N H, PEI H, HUANG Y P, et al. (-)-epigallocatechin-3-gallate inhibits arsenic-induced inflammation and apoptosis through suppression of oxidative stress in mice [J]. Cellular Physiology and Biochemistry, 2017, 41(5): 1788-1800. |
| [50] | TAGHIZABET N, BAHMANPOUR S, FARD N Z, et al. In vitro growth of the ovarian follicle: Taking stock of advances in research[J]. JBAR Assisted Reproduction, 2022, 26(3): 508. |
| [51] | KHUNMANEE S, PARK H. Three-dimensional culture for in vitro folliculogenesis in the aspect of methods and materials[J]. Tissue Engineering Part, 2022, 28(6): 1242-1257. |
| [52] | ZHAO M, SUBUDENG G, ZHAO Y, et al. Effect of cyclic adenosine monophosphate on connexin 37 expression in sheep cumulus-oocyte complexes[J]. Journal of Developmental Biology, 2024, 12(2): 10. |
| [53] | KORDOWITZKI P, SOKOLOWSKA G, WASIELAK-POLITOWSKA M, et al. Pannexins and connexins: Their relevance for oocyte developmental competence[J]. International Journal of Molecular Sciences, 2021, 22(11): 5918. |
| [54] | SARAIVA M, ROSSETTO R, BRITO I, et al. Dynamic medium produces caprine embryo from preantral follicles grown in vitro [J]. Reproductive Sciences, 2010, 17: 1135-1143. |
| [55] | BARBONI B, RUSSO V, CECCONI S, et al. In vitro grown sheep preantral follicles yield oocytes with normal nuclear-epigenetic maturation [J]. PLoS One, 2011, 6(11): e27550. |
| [56] | DE AGUIAR L H, HYDE K A, PEDROZA G H, et al. Heat stress impairs in vitro development of preantral follicles of cattle [J]. Animal Reproduction Science, 2020, 213: 106277. |
| [57] | GOUVEIA B, ET A L, BARROS V,et al. Effect of ovarian tissue transportation in Amburana cearensis extract on the morphology and apoptosis of goat preantral follicles [J]. Animal Reproduction, 2018, 12(2): 316-323. |
| [58] | GOUVEIA B, MACEDO T, SANTOS J, et al. Supplemented base medium containing Amburana cearensis associated with FSH improves in vitro development of isolated goat preantral follicles [J]. Theriogenology, 2016, 86(5): 1275-1284. |
| [59] | SANTOS J, MONTE A, LINS T, et al. Kaempferol can be used as the single antioxidant in the in vitro culture medium, stimulating sheep secondary follicle development through the phosphatidylinositol 3-kinase signaling pathway [J]. Theriogenology, 2019, 136: 86-94. |
| [60] | ANDRADE K O, MONTE A P, SILVA R L, et al. Effect of lactose on the in vitro development of sheep secondary follicles [J]. Animal Reproduction Science, 2024, 270: 107578. |
| [61] | FERREIRA A C A, MASIDE C, SÁ N A R, et al. Balance of insulin and FSH concentrations improves the in vitro development of isolated goat preantral follicles in medium containing GH [J]. Animal Reproduction Science, 2016, 165: 1-10. |
| [62] | FERREIRA A C A, CADENAS J, SÁ N A R, et al. In vitro culture of isolated preantral and antral follicles of goats using human recombinant FSH: Concentration-dependent and stage-specific effect[J]. Animal Reproduction Science, 2018, 196: 120-129. |
| [63] | ROSSETTO R, SARAIVA M, BERNUCI M, et al. Impact of insulin concentration and mode of FSH addition on the in vitro survival and development of isolated bovine preantral follicles [J]. Theriogenology, 2016, 86(4): 1137-1145. |
| [64] | BELLI M, VIGONE G, MERICO V, et al. Towards a 3D culture of mouse ovarian follicles [J]. The International Journal of Developmental Biology, 2012, 56(10-12): 931-937. |
| [65] | TORRANCE C, TELFER E, GOSDEN R. Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture [J]. Reproduction, 1989, 87(1): 367-374. |
| [66] | SHARMA G T, DUBEY P K, MEUR S. Survival and developmental competence of buffalo preantral follicles using three-dimensional collagen gel culture system [J]. Animal Reproduction Science, 2009, 114(1-3): 115-124. |
| [67] | ARAUJO V, GASTAL M, WISCHRAL A, et al. In vitro development of bovine secondary follicles in two-and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone [J]. Theriogenology, 2014, 82(9): 1246-1253. |
| [68] | SILVA G D, ROSSETTO R, CHAVES R, et al. In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems [J]. Zygote, 2015, 23(4): 475-484. |
| [69] | SADEGHNIA S, AKHONDI M M, HOSSEIN G, et al. Development of sheep primordial follicles encapsulated in alginate or in ovarian tissue in fresh and vitrified samples [J]. Cryobiology, 2016, 72(2): 100-105. |
| [1] | Shulin LIU, Huiru MA, Ruifeng YANG, Zhibi BAO, Gai HANG, Lingran ZHANG, Jiaxin WANG, Dong YANG. Research Progress on the Application of Astragalus Straw in Ruminant Husbandry [J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(1): 61-70. |
| [2] | WANG Yong, MA Chi, WANG Chao, ZHAO Qinan, SUN Zhipeng, TIAN Feng, WANG Li, JIN Hai, LI Changqing. Research Progress on Molecular Mechanism of miRNA and lncRNA Regulating Follicular Development in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 771-780. |
| [3] | TANG Jun, HE Li, WANG Penghui, HE Xiaolong, YI Huanming, CHENG Xiao, REN Chunhuan, CHEN Jiahong, WANG Qiangjun, ZHANG Zijun. Research Progress on the Role of Intestinal Microbes in Healthy Production of Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1466-1479. |
| [4] | ZHENG Jieyi, YANG Shuli, ZHAO Kailing, GONG Li, LI Chuan. Effects of Heat Stress on Rumen Function and Potential Heat Tolerance Markers in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 1041-1049. |
| [5] | HU Junhao, LIU Jibing, ZHOU Jiali, MA Yue, ZHAO Hongxi. Progress on in vitro Culture of Bovine Coccidia [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 700-708. |
| [6] | LI Xiaopeng, GAO Pengxiang, JIANG Linshu, TU Yan. Research Progress of Oregano Essential Oil in Alleviating Ruminal Methane Emission in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(1): 106-113. |
| [7] | CHEN Yu, LIU Junyang, MU Qing, LU Zeyu, LI Yunhua, LIU Jiasen, WU Zixian, WANG Haoyuan, SUN Yiwen, ZHAO Yanhong. Research Progress on the Regulation of Economic Traits Related to Bovine Ruminants by Long-chain Non-coding RNA [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(1): 203-211. |
| [8] | PAN Xiaoting, LI Juan, CHEN Bing, LIU Junjie, QI Nanshan, LIAO Shenquan, LYU Minna, LIN Xuhui, CAI Haiming, HU Junjing, SONG Yongle, BAI Yinshan, SUN Mingfei. Research Progress on Chicken Coccidia in vitro Culture Models and Application [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(1): 292-301. |
| [9] | YAN Han, TIAN Yangqing, ANG Yanfen, WANG Yayuan, ZHANG Xuefeng, YAN Yulin. Study on the Isolation, Identification and Culture Characteristics of Canine Hematopoietic Stem Cells [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(7): 2678-2687. |
| [10] | YU Zonggang, MA Haiming. Research Progress on Isolation and Culture of Porcine Skeletal Muscle Satellite Cells in vitro [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(8): 2931-2942. |
| [11] | BAO Yuexian, ZHAO Feifei, GONG Wendian, LU Zeyu, MU Qing, LIU Junyang, TE Rigele, ZHAO Yanhong. Effects of Prolactin on Hair Follicle Culture of Inner Mongolia Cashmere Goats in vitro [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(6): 2072-2078. |
| [12] | YI Minna, Ulaangerel Tseweendolmaa, Toli Davshilt, WANG Xisheng, SHEN Yingchao, DU Ming, REN Hong, MANG Lai, BOU Gerelchimeg. Research Progress on Function,Isolation,Purification and Identification of Sertoli Cells [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(8): 2947-2956. |
| [13] | ZHANG Jia, WANG Yuan, AN Xiaoping, QI Jingwei. Nutritional Characteristics of Sunflower By-products and Its Application in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(3): 916-924. |
| [14] | LI Wandong, ZHANG Xiaowei, FENG Yuzhe, CUI Zhanhong. Research Advances on Applications of Trace Element Cooper in Ruminants Production [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(1): 178-189. |
| [15] | SONG Lianjie, CUI Yingying, ZHAO Yiping, BAI Dongyi, REN Xiujuan, TE Rigele, DUGARJAVIIN Manglai, LI Bei. Isolation,Culture and Identification of Testis Sertoli Cells in Mongolian Horses in vitro [J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(9): 2751-2758. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||