China Animal Husbandry & Veterinary Medicine ›› 2024, Vol. 51 ›› Issue (3): 1132-1141.doi: 10.16431/j.cnki.1671-7236.2024.03.025
• Genetics and Breeding • Previous Articles Next Articles
CHEN Bohe1, LIUFU Sui1, YU Zonggang1, WANG Kaiming1, LIU Xiaolin1, YI Lei1, MA Haiming1,2,3
Received:
2023-08-30
Online:
2024-03-05
Published:
2024-02-27
CLC Number:
CHEN Bohe, LIUFU Sui, YU Zonggang, WANG Kaiming, LIU Xiaolin, YI Lei, MA Haiming. Research Progress on the Regulation of Non-coding RNA in Muscle Fiber-type Conversion in Animals[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 1132-1141.
[1] 欧秀琼,李星,钟正泽,等.猪肌肉肌纤维特性与肌肉品质的关系及品种、性别差异[J].新疆农业科学, 2019, 56(12):2345-2352. OU X Q, LI X, ZHONG Z Z, et al.Relationship of muscle fiber characteristics with meat quality and its breed and sex differences in pigs[J].Xinjiang Agricultural Sciences, 2019, 56(12):2345-2352.(in Chinese) [2] 陈映,葛桂华,徐旭,等.品种和肌纤维类型对猪肉质性状的影响[J].中国畜牧杂志, 2020, 56(11):52-55. CHEN Y, GE G H, XU X, et al.Effect of different muscle fiber types on meat quality in pigs[J].Chinese Journal of Animal Science, 2020, 56(11):52-55.(in Chinese) [3] KELLIS M, FELDSER D, CASSADY J P, et al.Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J].Nature, 2009, 458(7235):223-227. [4] ABO E A, ALI Y, BASSYOUNI I H, et al.Upregulation of miR-221/222 expression in rheumatoid arthritis (RA) patients:Correlation with disease activity[J].Clinical and Experimental Medicine, 2019, 19(1):47-53. [5] PAOLETTI A, ROHMER J, LY B, et al.Monocyte/macrophage abnormalities specific to rheumatoid arthritis are linked to miR-155 and are differentially modulated by different TNF inhibitors[J].Journal of Immunology, 2019, 203(7):1766-1775. [6] YAN H, BU P.Non-coding RNA in cancer[J]. Essays in Biochemistry, 2021, 65(4):625-639. [7] 徐妲,陈璇,罗晓彤,等.snRNA在哺乳动物中基因表达研究进展[J].中国畜牧杂志, 2020, 56(1):39-44. XU D, CHEN X, LUO X T, et al.Research progress on gene expression of small nuclear RNA in mammals[J].Chinese Journal of Animal Science, 2020, 56(1):39-44.(in Chinese) [8] SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FARD S, et al.An overview of microRNAs:Biology, functions, therapeutics, and analysis methods[J].Journal of Cellular Physiology, 2019, 234(5):5451-5465. [9] KILIKEVICIUS A, MEISTER G, COREY D R.Reexamining assumptions about miRNA-guided gene silencing[J].Nucleic Acids Research, 2022, 50(2):617-634. [10] TIWARI A, MUKHERJEE B, DIXIT M.microRNA key to angiogenesis regulation:miRNA biology and therapy[J].Current Cancer Drug Targets, 2018, 18(3):266-277. [11] LI Y, YANG M, LOU A, et al.Integrated analysis of expression profiles with meat quality traits in cattle[J].Scientific Reports, 2022, 12(1):5926. [12] YIN L, SHEN X, YIN D, et al.Characteristics of the microRNA expression profile of exosomes released by Vero cells infected with porcine epidemic diarrhea virus[J].Viruses, 2022, 14(4):806. [13] HILL M, TRAN N.miRNA interplay:Mechanisms and consequences in cancer[J].Disease Models&Mechanisms, 2021, 14(4):dmm047662. [14] WU M, YUAN Y, HUANG B, et al.Identification of a TGF-β/SMAD/lnc-UTGF positive feedback loop and its role in hepatoma metastasis[J]. Signal Transduction and Targeted Therapy, 2021, 6(1):441. [15] BROOKE M H, KAISER K K.Three "myosin adenosine triphosphatase" systems:The nature of their pH lability and sulfhydryl dependence[J].Journal of Histochemistry & Cytochemistry, 1970, 18(9):670-672. [16] BROOKE M H, KAISER K K.Muscle fiber types:How many and what kind?[J].Archives of Neurology, 1970, 23(4):369-379. [17] YANNA H, QIN X, YUEYUE C, et al.Resveratrol increase the proportion of oxidative muscle fiber through the AdipoR1-AMPK-PGC-1α pathway in pigs[J]. Journal of Functional Foods, 2020, 73(2020):104090. [18] MEDLER S.Mixing it up:The biological significance of hybrid skeletal muscle fibers[J].Journal of Experimental Biology, 2019, 222(23):jeb200832. [19] RONNBLOM A, THORNELL L E, SHAH F, et al.Unique fiber phenotype composition and metabolic properties of the stapedius and tensor tympani muscles in the human middle ear[J].Journal of Anatomy, 2023, 243(1):39-50. [20] LARSON L, LIOY J, JOHNSON J, et al.Transitional hybrid skeletal muscle fibers in rat soleus development[J]. Journal of Histochemistry&Cytochemistry, 2019, 67(12):891-900. [21] SCHIAFFINO S.Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies[J].FEBS Journal, 2018, 285(20):3688-3694. [22] UNSIHUAY D, HU H, QIU J, et al.Multimodal high-resolution nano-DESI MSI and immunofluorescence imaging reveal molecular signatures of skeletal muscle fiber types[J]. Chemical Science, 2023, 14(15):4070-4082. [23] AGARWAL M, SHARMA A, KUMAR P, et al.Myosin heavy chain-embryonic regulates skeletal muscle differentiation during mammalian development[J].Development (Cambridge, England), 2020, 147(7):dev184507. [24] CHEN P, XU D Q, XU S L, et al.Blebbistatin modulates prostatic cell growth and contrapctility through myosin Ⅱ signaling[J].Clinical Science (London, England), 2018, 132(20):2189-2205. [25] SHEN L, CHEN L, ZHANG S, et al.MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality[J].Meat Science, 2016, 116:201-206. [26] CHEMELLO F, GRESPI F, ZULIAN A, et al.Transcriptomic analysis of single isolated myofibers identifies miR-27a-3p and miR-142-3p as regulators of metabolism in skeletal muscle[J].Cell Reports (Cambridge), 2019, 26(13):3784-3797. [27] LIU Y, ZHANG M, SHAN Y, et al.miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome[J].Scientific Reports, 2020, 10(1):10619. [28] XU M, CHEN X, CHEN D, et al.microRNA-499-5p regulates skeletal myofiber specification via NFATc1/MEF2C pathway and Thrap1/MEF2C axis[J].Life Sciences, 2018, 215:236-245. [29] ZHANG S, CHEN X, HUANG Z, et al.Leucine promotes porcine myofibre type transformation from fast-twitch to slow-twitch through the protein kinase B (Akt)/forkhead box 1 signalling pathway and microRNA-27a[J].British Journal of Nutrition, 2019, 121(1):1-8. [30] D'SOUZA R F, ZENG N, MARKWORTH J F, et al.Divergent effects of cold water immersion versus active recovery on skeletal muscle fiber type and angiogenesis in young men[J].American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2018, 314(6):R824-R833. [31] HAGIWARA N, YEH M, LIU A.Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice[J].Developmental Dynamics, 2007, 236(8):2062-2076. [32] HONDA M, HIDAKA K, FUKADA S, et al.Vestigial-like 2 contributes to normal muscle fiber type distribution in mice[J].Scientific Reports, 2017, 7(1):7112-7168. [33] QUIAT D, VOELKER K A, PEI J, et al.Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(25):10196-10201. [34] VAN ROOIJ E, QUIAT D, JOHNSON B A, et al.A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J].Developmental Cell, 2009, 17(5):662-673. [35] YANG K, WANG L, ZHOU G, et al.Phytol promotes the formation of slow-twitch muscle fibers through PGC-1α/miRNA but not mitochondria oxidation[J].Journal of Agricultural and Food Chemistry, 2017, 65(29):5916-5925. [36] IWASAKI H, ICHIHARA Y, MORINO K, et al.microRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells[J].Scientific Reports, 2021, 11(1):1161. [37] BJORKMAN K K, GUESS M G, HARRISON B C, et al.miR-206 enforces a slow muscle phenotype[J].Journal of Cell Science, 2020, 133(15):jcs243162. [38] DA PAIXÃO A O, BOLIN A P, SILVESTRE J G, et al.Palmitic acid impairs myogenesis and alters temporal expression of miR-133a and miR-206 in C2C12 myoblasts[J].International Journal of Molecular Sciences, 2021, 22(5):2748. [39] ZHANG D, WANG X, LI Y, et al.Thyroid hormone regulates muscle fiber type conversion via miR-133a1[J].Journal of Cell Biology, 2014, 207(6):753-766. [40] GAN M, SHEN L, LIU L, et al.miR-222 is involved in the regulation of genistein on skeletal muscle fiber type[J].Journal of Nutritional Biochemistry, 2020, 80:108320. [41] ZHANG Y, YANG M, ZHOU P, et al.Beta-hydroxy-beta-methylbutyrate-Induced upregulation of miR-199a-3p contributes to slow-to-fast muscle fiber type conversion in mice and C2C12 cells[J].Journal of Agricultural and Food Chemistry, 2020, 68(2):530-540. [42] WEN W, CHEN X, HUANG Z, et al.Resveratrol regulates muscle fiber type conversion via miR-22-3p and AMPK/SIRT1/PGC-1alpha pathway[J].Journal of Nutritional Biochemistry, 2020, 77:108297. [43] WEN W, CHEN X, HUANG Z, et al.miR-22-3p regulates muscle fiber-type conversion through inhibiting AMPK/SIRT1/PGC-1α pathway[J].Animal Biotechnology, 2021, 32(2):254-261. [44] WEN W, CHEN X, HUANG Z, et al.Resveratrol regulates muscle fiber type gene expression through AMPK signaling pathway and miR-22-3p in porcine myotubes[J].Animal Biotechnology, 2022, 33(3):579-585. [45] XU M, CHEN X, HUANG Z, et al.microRNA-139-5p suppresses myosin heavy chain Ⅰ and Ⅱa expression via inhibition of the calcineurin/NFAT signaling pathway[J].Biochemical and Biophysical Research Communications, 2018, 500(4):930-936. [46] DU J, ZHANG P, ZHAO X, et al.microRNA-351-5p mediates skeletal myogenesis by directly targeting lactamase-β and is regulated by lnc-mg[J].The FASEB Journal, 2018, 33(2):1911-1926. [47] BRIDGES M C, DAULAGALA A C, KOURTIDIS A.LNCcation:lncRNA localization and function[J].Journal of Cell Biology, 2021, 220(2):e202009045. [48] WOHLWEND M, LAURILA P P, WILLIAMS K, et al.The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging[J].Science Translational Medicine, 2021, 13(623):c7367. [49] DOU M, YAO Y, MA L, et al.The long noncoding RNA MyHC ⅡA/X-AS contributes to skeletal muscle myogenesis and maintains the fast fiber phenotype[J].The Journal of Biological Chemistry, 2020, 295(15):4937-4949. [50] HE Z Z, ZHAO T, QIMUGE N, et al.COPS3 AS lncRNA enhances myogenic differentiation and maintains fast-type myotube phenotype[J].Cell Signal, 2022, 95:110341. [51] MA M, CAI B, JIANG L, et al.lncRNA-Six1 is a target of miR-1611 that functions as a ceRNA to regulate Six1 protein expression and fiber type switching in chicken myogenesis[J].Cells (Basel, Switzerland), 2018, 7(12):243. [52] YU J, WANG Z, YANG X, et al.lncRNA-FKBP1C regulates muscle fiber type switching by affecting the stability of MYH1B[J]. Cell Death Discovery, 2021, 7(1):73. [53] JU X, LIU Y, SHAN Y, et al.Analysis of potential regulatory lncRNAs and circRNAs in the oxidative myofiber and glycolytic myofiber of chickens[J].Scientific Reports, 2021, 11(1):20861. [54] WANG S, TAN B, XIAO L, et al.Comprehensive analysis of long noncoding RNA modified by m6A methylation in oxidative and glycolytic skeletal muscles[J].International Journal of Molecular Sciences, 2022, 23(9):4600. [55] WANG J, ZHU S, MENG N, et al.ncRNA-encoded peptides or proteins and cancer[J].Molecular Therapy, 2019, 27(10):1718-1725. [56] CAO H, LIU J, DU T, et al.Circular RNA screening identifies circMYLK4 as a regulator of fast/slow myofibers in porcine skeletal muscles[J].Molecular Genetics and Genomics, 2022, 297(1):87-99. [57] LI B, YIN D, LI P, et al.Profiling and functional analysis of circular RNAs in porcine fast and slow muscles[J].Frontiers in Cell and Developmental Biology, 2020, 8:322. [58] SHEN L, GAN M, TANG Q, et al.Comprehensive analysis of lncRNAs and circRNAs reveals the metabolic dpecialization in oxidative and glycolytic skeletal muscles[J].International Journal of Molecular Sciences, 2019, 20(12):2855. [59] GAUTHIER B R, COBO-VUILLEUMIER N, LÓPEZ-NORIEGA L.Roles of extracellular vesicles associated non-coding RNAs in diabetes mellitus[J].Frontiers in Endocrinology, 2022, 13:1057407. [60] WAN X, LIAO J, LAI H, et al.Roles of microRNA-192 in diabetic nephropathy:The clinical applications and mechanisms of action[J].Frontiers in Endocrinology (Lausanne), 2023, 14:1179161. |
[1] | LYU Lingyan, SUN Ruyu, LIN Changhua, ZHANG Shengbin, QIN Xiuzhen, BAI Xiufang, WU Yongshao, CHEN Zhao, LIU Lei, ZHANG Bing, JIANG Jiaxia, ZHANG Jiaqing. Comparative Analysis of miRNA-mRNA Expression Profile in Hypothalamus-Pituitary-Ovary Gonad Axis During Estrus and Anestrus in Gilts [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 2965-2980. |
[2] | JIA Chunyan, SUN Yanyong, BAO Yonghong, ZHANG Wenguang, DU Chenguang. Alternative Splicing Analysis of mRNA and lncRNA Induced by Exogenous Melatonin for Regulating Cashmere Growth Based on Transcriptomics [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3165-3177. |
[3] | NIU Shuran, PAN Jianfeng, RONG Youjun, AO Xiaofang, WANG Yihan, SHANG Fangzheng, WANG Ruijun, ZHANG Yanjun. Advances on the Application of Circular RNA in Important Economic Traits in Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2468-2481. |
[4] | REN Hao, ZHU Yixuan, CHAO Tingting, WANG Xiaoyi, LU Shaoxiong, YANG Yongli, CHEN Qiang, LI Mingli. Identification and Functional Prediction of lncRNA in Longissimus Dorsi Muscle of Saba Pigs with Different Growth Rates [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2494-2505. |
[5] | ZHANG Zhihao, LU Ligang, ZHANG Zijing, WANG Xiangnan, MIN Jia, HAN Yiwei, PENG Shengkun, LUAN Manru, LIU Aobing, SHI Qiaoting, WANG Eryao. Study on the Role of miRNA from Uterine Exosomes in Embryo Development and Implantation of Xianan Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2691-2704. |
[6] | JIANG Chenxi, CHENG Sufang, WU Guozao, CHEN Juan, GAO Xiaona, GUO Xiaoquan, LIU Ping. Research Progress on the Role of Pulmonary Artery Endothelial Cells in Broiler Ascites Syndrome and the Regulation Mechanism of miRNA [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1522-1532. |
[7] | HE Xiaofei, LEI Yuhang, ZHU Li, GAN Mailin, SHEN Linyuan. Research Progress on circRNA Regulating Fat Deposition in Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1627-1638. |
[8] | LI Zhiyi, LI Jie, CHEN Chuwen, NONG Yi, WANG Jiayan, WANG Zi, WU Jinbo, LI Zhixiong. Analysis and Identification of miRNA in Leg Muscle Tissue of Tibetan Chicken Embryos at Different Developmental Stages [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1681-1693. |
[9] | LI Jingxuan, LIN Yanjiao, HUANG Qiongjun, HAN Xinyan, ZHANG Yuelang. Research Progress on Non-coding RNA Related to Skeletal Muscle Development in Goats [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 582-592. |
[10] | WANG Yong, MA Chi, WANG Chao, ZHAO Qinan, SUN Zhipeng, TIAN Feng, WANG Li, JIN Hai, LI Changqing. Research Progress on Molecular Mechanism of miRNA and lncRNA Regulating Follicular Development in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 771-780. |
[11] | YANG Li, DU Xiaomei, LIU Mengyuan, WU Shenglong, BAO Wenbin, WU Zhengchang. Screening and Functional Verification of Key lncRNA Affecting Porcine Epidemic Diarrhea Virus Replication [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 792-800. |
[12] | XU Haotian, YU Yuetong, LI Jing, MA Zhiyuan, YANG Bin, WANG Zekun, TUO Haixin, QI Meng. Comparative Analysis of miRNA Expression Profiles in Bovine Mammary Epithelial Cells Treated with Lipopolysaccharide and Calcium Ions [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(9): 4066-4079. |
[13] | WANG Qiushi, LI Jiangling, ZHAO Sujun, LIU Rui. Identification and Function Prediction of lncRNA Related to Reproductive Function of Uterine Body in Tibetan and Chuanxiang Black Pigs During Pregnancy [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(8): 3417-3427. |
[14] | YAO Weijia, LUO Chunhai, LIU Jiajin, WANG Wei, LI Danyang, LIU Bingqi, FU Shixin. Effect of Overexpression of miRNA-424-5p Targeting AKT3 on Apoptosis of Endometrial Epithelial Cells in Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(8): 3635-3642. |
[15] | ZHANG Ke, ZHANG Min, LI Tianbao, ZHANG Jie, LU Shengsheng, JIANG Mingsheng. Screening of Differential lncRNAs and Construction of ceRNA Network in Ovary Tissue of Guangxi Ma Chicken [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(7): 2739-2750. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||