China Animal Husbandry & Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (9): 3432-3437.doi: 10.16431/j.cnki.1671-7236.2021.09.035
• Preventive Veterinary Medicine • Previous Articles Next Articles
ZHANG Xiaoxuan, GUO Jing, LI Xuyong
Revised:
2021-03-12
Online:
2021-09-20
Published:
2021-09-17
CLC Number:
ZHANG Xiaoxuan, GUO Jing, LI Xuyong. Research Progress on the Effect of Host Protein ANP32A on Influenza Virus Function[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(9): 3432-3437.
[1] KRAMMER F, SMITH G J D, FOUCHIER R A M, et al. Influenza[J]. Nature Reviews Disease Primers, 2018, 4(1):3. [2] TAUBENBERGER J K, KASH J C, MORENS D M.The 1918 influenza pandemic:100 years of questions answered and unanswered[J]. Science Translational Medicine, 2019, 11(502):eaau5485. [3] 程艺, 田辉, 张亚, 等.H9亚型禽流感病毒HF株的分离鉴定和免疫原性评价[J]. 中国畜牧兽医, 2020, 47(9):2945-2952. CHENG Y, TIAN H, ZHANG Y, et al. Isolation, identification and immunogenicity evaluation of H9N2 subtype Avian influenza virus HF strain[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(9):2945-2952.(in Chinese) [4] LONG J S, MISTRY B, HASLAM S M, et al. Host and viral determinants of Influenza A virus species specificity[J]. Nature Reviews Microbiology, 2019, 17(2):67-81. [5] HUYTON T, WOLBERGER C.The crystal structure of the tumor suppressor protein pp32(Anp32a):Structural insights into Anp32 family of proteins[J]. Protein Science, 2007, 16(7):1308-1315. [6] REILLY P T, YU Y, HAMICHE A, et al. Cracking the ANP32 whips:Important functions, unequal requirement, and hints at disease implications[J]. Bioessays, 2014, 36(11):1062-1071. [7] MATILLA A, RADRIZZANI M.The ANP32 family of proteins containing leucine-rich repeats[J]. Cerebellum, 2005, 4(1):7-18. [8] TE V A, FODOR E.Influenza virus RNA polymerase:Insights into the mechanisms of viral RNA synthesis[J]. Nature Reviews Microbiology, 2016, 14(8):479-493. [9] ALMOND J W.A single gene determines the host range of influenza virus[J]. Nature, 1977, 270(5638):617-618. [10] PENG Q, LIU Y, PENG R, et al. Structural insight into RNA synthesis by influenza D polymerase[J]. Nature Microbiology, 2019, 4(10):1750-1759. [11] REICH S, GUILLIGAY D, PFLUG A, et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase[J]. Nature, 2014, 516(7531):361-366. [12] CHANG S, SUN D, LIANG H, et al. Cryo-EM structure of Influenza virus RNA polymerase complex at 4.3 A resolution[J]. Molecular Cell, 2015, 57(5):925-935. [13] HENGRUNG N, EL OMARI K, SERNA MARTIN I, et al. Crystal structure of the RNA-dependent RNA polymerase from Influenza C virus[J]. Nature, 2015, 527(7576):114-117. [14] FAN H, WALKER A P, CARRIQUE L, et al. Structures of Influenza A virus RNA polymerase offer insight into viral genome replication[J]. Nature, 2019, 573(7773):287-290. [15] THIERRY E, GUILLIGAY D, KOSINSKI J, et al. Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains[J]. Molecular Cell, 2016, 61(1):125-137. [16] PFLUG A, GUILLIGAY D, REICH S, et al. Structure of influenza A polymerase bound to the viral RNA promoter[J]. Nature, 2014, 516(7531):355-360. [17] TE V A.Common and unique features of viral RNA-dependent polymerases[J]. Cellular and Molecular Life Sciences, 2014, 71(22):4403-4420. [18] BI Z, YE H, WANG X, et al. Insights into species-specific regulation of ANP32A on the mammalian-restricted Influenza virus polymerase activity[J]. Emerging Microbes Infections, 2019, 8(1):1465-1478. [19] FODOR E, TE VELTHUIS A J W.Structure and function of the Influenza virus transcription and replication machinery[J]. Cold Spring Harbor Perspectives in Medicine, 2020, 10(9):a038398. [20] FERHADIAN D, CONTRANT M, SMYTH R P, et al. Structural and functional motifs in Influenza virus RNAs[J]. Frontiers in Microbiology, 2018, 9:559. [21] PFLUG A, LUKARSKA M, REICH S, et al. Structural insights into RNA synthesis by the Influenza virus transcription-replication machine[J]. Virus Research, 2017, 234:103-117. [22] ZHANG H, ZHANG Z, WANG Y, et al. Fundamental contribution and host range determination of ANP32A and ANP32B in Influenza A virus polymerase activity[J]. Journal of Virology, 2019, 93(13):e00174-19. [23] STALLER E, SHEPPARD C M, NEASHAM P J, et al. ANP32 proteins are essential for Influenza virus replication in human cells[J]. Journal of Virology, 2019, 93(17):e00217-19. [24] ZHANG Z, ZHANG H, XU L, et al. Selective usage of ANP32 proteins by Influenza B virus polymerase:Implications in determination of host range[J]. PLoS Pathogens, 2020, 16(10):e1008989. [25] CARRIQUE L, FAN H, WALKER A P, et al. Host ANP32A mediates the assembly of the Influenza virus replicase[J]. Nature, 2020, 587(7835):638-643. [26] SUGIYAMA K, KAWAGUCHI A, OKUWAKI M, et al. Pp32 and APRIL are host cell-derived regulators of Influenza virus RNA synthesis from cRNA[J]. eLife, 2015, 4:e08939. [27] DOMINGUES P, HALE B G.Functional insights into ANP32A-dependent Influenza A virus polymerase host restriction[J]. Cell Reports, 2017, 20(11):2538-2546. [28] BAKER S F, LEDWITH M P, MEHLE A.Differential splicing of ANP32A in birds alters its ability to stimulate RNA synthesis by restricted influenza polymerase[J]. Cell Reports, 2018, 24(10):2581-2588. [29] PARK Y H, CHUNGU K, LEE S B, et al. Host-specific restriction of Avian influenza virus caused by differential dynamics of ANP32 family members[J]. The Journal of Infectious Diseases, 2020, 221(1):71-80. [30] DOMINGUES P, ELETTO D, MAGNUS C, et al. Profiling host ANP32A splicing landscapes to predict Influenza A virus polymerase adaptation[J]. Nature Communications, 2019, 10(1):3396. [31] FANG A, BI Z, YE H, et al. SRSF10 inhibits the polymerase activity and replication of Avian influenza virus by regulating the alternative splicing of chicken ANP32A[J]. Virus Research, 2020, 286:198063. [32] MEHLE A.The Avian influenza virus polymerase brings ANP32A home to roost[J]. Cell Host Microbe, 2016, 19(2):137-138. [33] CAMACHO-ZARCO A R, KALAYIL S, MAURIN D, et al. Molecular basis of host-adaptation interactions between Influenza virus polymerase PB2 subunit and ANP32A[J]. Nature Communications, 2020, 11(1):3656. [34] MISTRY B, LONG J S, SCHREYER J, et al. Elucidating the interactions between Influenza virus polymerase and host factor ANP32A[J]. Journal of Virology, 2020, 94(3):e01353-19. [35] BAKER S F, MEHLE A.ANP32B, or not to be, that is the question for Influenza virus[J]. eLife, 2019, 8:e48084. [36] ZHANG H, LI H, WANG W, et al. A unique feature of swine ANP32A provides susceptibility to Avian Influenza virus infection in pigs[J]. PLoS Pathogens, 2020, 16(2):e1008330. [37] WEI X, LIU Z, WANG J, et al. The interaction of cellular protein ANP32A with Influenza A virus polymerase component PB2 promotes vRNA synthesis[J]. Archives of Virology, 2019, 164(3):787-798. [38] LONG J S, MISTRY B, GOLDHILL D, et al. Species specific differences in use of ANP32 proteins by Influenza A virus[J]. eLife, 2019, 8:e45066. [39] PEACOCK T P, SWANN O C, SALVESEN H A, et al. Swine ANP32A supports Avian influenza virus polymerase[J]. Journal of Virology, 2020, 94(12):e00132-20. [40] SUBBARAO E K, LONDON W, MURPHY B R.A single amino acid in the PB2 gene of Influenza A virus is a determinant of host range[J]. Journal of Virology, 1993, 67(4):1761-1764. [41] LONG J S, MISTRY B, JAMES J, et al. Species difference in ANP32A underlies Influenza A virus polymerase host restriction[J]. Nature, 2016, 529(7584):101-104. [42] LI W, LEE H H Y, LI R F, et al. The PB2 mutation with lysine at 627 enhances the pathogenicity of Avian influenza (H7N9) virus which belongs to a non-zoonotic lineage[J]. Scientific Reports, 2017, 7(1):2352. [43] ZHANG H, LI X, GUO J, et al. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 Influenza virus[J]. The Journal of General Virology, 2014, 95(Pt 4):779-786. [44] YAMAYOSHI S, FUKUYAMA S, YAMADA S, et al. Amino acids substitutions in the PB2 protein of H7N9 Influenza A viruses are important for virulence in mammalian hosts[J]. Scientific Reports, 2015, 5:8039. [45] LIANG L, JIANG L, LI J, et al. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 Avian influenza virus in mammals[J]. mBio, 2019, 10(3):e01162-19. [46] MOK C K, LEE H H, LESTRA M, et al. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 Influenza virus in mammalian hosts[J]. Journal of Virology, 2014, 88(6):3568-3576. [47] STEEL J, LOWEN A C, MUBAREKA S, et al. Transmission of Influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N[J]. PLoS Pathogens, 2009, 5(1):e1000252. |
[1] | LIU Min, CHENG Huai, ZHENG Zhenzhen, ZHANG Mengsi, ZHANG Hewei, REN Jingqiang. Eukaryotic Expression and Polyclonal Antibody Preparation of N Protein of Canine Parainfluenza Virus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2287-2294. |
[2] | SI Wei, TAN Xiyu, XU Lingyun, LUO Tingrong, LI Xiaoning, GU Jinyan. Prokaryotic Expression of HA1 Protein of Swine Influenza Virus Subtype H3N2 and Preparation of Polyclonal Antibodies [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1739-1749. |
[3] | CHI Zhouying, LI Tianxu, WU Yaxin, QU Xiaoyun, LI Sijie, SUN Minhua, ZHANG Jianfeng, LIAO Ming, DU Shouwen. Exploration of Respiratory Tract Response Patterns in Chickens Infected with H9N2 Subtype Avian Influenza Virus [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(9): 3970-3979. |
[4] | HAN Hui, GUO Yajing, YAN Guangzhi, CHEN Shengnan, LIU Mingjie, MO Meilian, HUANG Liangzong. Isolation,Identification and Genetic Evolution Analysis of a Eurasian Avian-like Swine Influenza Virus [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1642-1650. |
[5] | LIAO Siyu, ZHENG Xin, DAI Qi, XU Shiyi, ZHANG Tianxu, ZHANG Xiuqiao, GUI Chun. Study on the Anti-AIV-H9N2 Activity of the Ethyl Acetate Extract from Alternanthera philoxeroides in vitro and in vivo [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 759-769. |
[6] | LONG Feng, XIE Shouyu, CUI Pengfei, SHI Kaichuang, WEI Xiankai, FENG Shuping, QU Sujie, LU Wenjun, LI Jianfeng, YIN Yanwen, DENG Guohua. Genetic Evolutionary Dynamics Analysis of HA and NA Genes of H9 Subtype Avian Influenza Virus in Guangxi from 2016 to 2021 [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(5): 1947-1958. |
[7] | XIE Shouyu, WANG Ruimin, CUI Pengfei, SHI Kaichuang, WEI Xiankai, FENG Shuping, LONG Feng, QU Sujie, LU Wenjun, HUANG Jinshan, HUANG Fengmei, WEN Xinrui, YIN Yanwen, DENG Guohua. Molecular Characteristics of Complete Genomes of Two H3 Subtype Avian Influenza Virus Isolates Derived from Sea Duck in Guangxi Province [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(4): 1319-1328. |
[8] | JIN Huan, TU Min, SHI Aihua, ZHAO Lei, SHEN Jia, XI Shuo, ZHANG Jianwei, ZHANG Zhenhua. Isolation,Identification of H9 Subtype Avian Influenza Virus and Immune Protection Effect of Inactivated Trivalent Vaccine of Newcastle Disease,Avian Influenza (H9 Subtype),and Avian Adenovirus Disease Against the Viruses [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(12): 5013-5021. |
[9] | HUANG Shu, ZENG Zhiyong, LIANG Haiying, TANG Deyuan, WANG Bin, BIAN Mengting, LIU Jiajia, ZHANG Jingxu, WAN Juan, PAN Xiangying, TIAN Hongli. Evolutionary Analysis and Molecular Characteristics of a H1N1 Subtype Swine Influenza Virus [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(12): 5084-5093. |
[10] | YANG Jing, ZHANG Xinyu, LIANG Zhipeng, CHENG Qing, WANG Congying, CHI Shihong, YUAN Sheng, GUO Jinyue, HUANG Shujian, WEN Feng. Prokaryotic Expression of NP Protein of H9N2 Subtype Avian Influenza Virus and Preparation of Polyclonal Antibody [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(10): 3963-3971. |
[11] | JIANG Ning, YIN Hang, ZHANG Yanwei, LI Zixin, CHI Xiaojuan, WANG Song. Research Progress on Co-infection of H9N2 Subtype Avian Influenza Virus with Other Pathogens [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(9): 3447-3455. |
[12] | YIN Yanwen, SHI Kaichuang, SUN Wenchao, XIE Shouyu, QU Sujie, LU Wenjun, WANG Luxia, QIN Yong, PEI Xingbiao, LING Dan. Surveillance Analysis of Low Pathogenic Avian Influenza Virus in Border Areas of Guangxi from 2013 to 2019 [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(8): 3002-3009. |
[13] | CHENG Dengfang, MEI Chen, LIU Juan, WANG Hongjun, XIAN Hong. Effect of Chinese Herbal Prescription on the Proliferation of H9N2 in MDCK Cells [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(2): 650-657. |
[14] | LI Qingmei, GUO Junqing, MENG Zekun, LI Yanhua, LIU Xiao, SHI Jianzhou, LI Ge, CHAI Shujun, LUO Jun, DENG Ruiguang, ZHANG Gaiping. Preparation and Application of Neutralizing Monoclonal Antibodies Against H9N2 Subtype Avian Influenza Virus [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(10): 3761-3769. |
[15] | LI Mingzhu, QU Zhehui, SONG Zhifeng, LI Chenfeng, YU Yueyang, GAO Mingchun, WANG Junwei. Expression of Bovine Parainfluenza Virus Type 3 HNex Protein and Preparation of Its Polyclonal Antibodies [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(1): 265-272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||