China Animal Husbandry & Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (9): 3447-3455.doi: 10.16431/j.cnki.1671-7236.2021.09.037
• Preventive Veterinary Medicine • Previous Articles Next Articles
JIANG Ning, YIN Hang, ZHANG Yanwei, LI Zixin, CHI Xiaojuan, WANG Song
Received:
2021-01-04
Online:
2021-09-20
Published:
2021-09-17
CLC Number:
JIANG Ning, YIN Hang, ZHANG Yanwei, LI Zixin, CHI Xiaojuan, WANG Song. Research Progress on Co-infection of H9N2 Subtype Avian Influenza Virus with Other Pathogens[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(9): 3447-3455.
[1] KANDEIL A, HICKS J T, YOUNG S G, et al. Active surveillance and genetic evolution of Avian influenza viruses in Egypt, 2016-2018[J]. Emerging Microbes & Infections, 2019, 8(1):1370-1382. [2] HORWOOD P F, HORM S V, SUTTIE A, et al. Co-circulation of Influenza A H5, H7, and H9 viruses and co-infected poultry in live bird markets, Cambodia[J]. Emerging Infectious Diseases, 2018, 24(2):352-355. [3] SHANMUGANATHAM K, FEEROZ M M, JONES-ENGEL L, et al. Antigenic and molecular characterization of Avian influenza A (H9N2) viruses, Bangladesh[J]. Emerging Infectious Diseases, 2013, 19(9):1993-1402. [4] LIN T N, NONTHABENJAWAN N, CHAIYAWONG S, et al. Influenza A (H9N2) virus, Myanmar, 2014-2015[J]. Emerging Infectious Diseases, 2017, 23(6):1041-1043. [5] MA M J, ZHAO T, CHEN S H, et al. Avian influenza A virus infection among workers at live poultry markets, China, 2013-2016[J]. Emerging Infectious Diseases, 2018, 24(7):1246-1256. [6] ZHOU J, WU J, ZENG X, et al. Isolation of H5N6, H7N9 and H9N2 Avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015[J]. Eurosurveillance, 2016, 21(35):30331. [7] GU M, XU L, WANG X, et al. Current situation of H9N2 subtype avian influenza in China[J]. Veterinary Research, 2017, 48(1):49-58. [8] PEACOCK T H P, JAMES J, SEALY J E, et al. A global perspective on H9N2 Avian influenza virus[J]. Viruses, 2019, 11(7):620-647. [9] SONG W, QIN K.Human-infecting Influenza A (H9N2) virus:A forgotten potential pandemic strain?[J]. Zoonoses and Public Health, 2020, 67(3):203-212. [10] HAJAM I A, KIM J, LEE J H. Salmonella Gallinarum delivering M2eCD40L in protein and DNA formats acts as a bivalent vaccine against fowl typhoid and H9N2 infection in chickens[J]. Veterinary Research, 2018, 49(1):99-112. [11] LI H, LIU X, CHEN F, et al. Avian influenza virus subtype H9N2 affects intestinal microbiota, barrier structure injury, and inflammatory intestinal disease in the chicken ileum[J]. Viruses, 2018, 10(5):270-283. [12] MA L L, SUN Z H, XU Y L, et al. Screening host proteins required for bacterial adherence after H9N2 virus infection[J]. Veterinary Microbiology, 2018, 213:5-14. [13] HATTA M, KAWAOKA Y.The continued pandemic threat posed by Avian influenza viruses in Hong Kong[J]. Trends in Microbiology, 2002, 10(7):340-344. [14] REID A H, FANNING T G, HULTIN J V, et al. Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4):1651-1656. [15] BANO S, NAEEM K, MALIK S A.Evaluation of pathogenic potential of Avian influenza virus serotype H9N2 in chickens[J]. Avian Diseases, 2003, 47(3 Suppl):817-822. [16] LEE D H, CRIADO M F, SWAYNE D E.Pathobiological origins and evolutionary history of highly pathogenic Avian influenza viruses[J]. Cold Spring Harbor Perspectives in Medicine, 2021, 11(2):a038679. [17] CARNACCINI S, PEREZ D R.H9 influenza viruses:An emerging challenge[J]. Cold Spring Harbor Perspectives in Medicine, 2020, 10(6):a038588. [18] MORTIMER P P.Influenza:The centennial of a zoonosis[J]. Reviews Medical Virology, 2019, 29(1):e2030. [19] GUAN Y, SHORTRIDGE K F, KRAUSS S, et al. Molecular characterization of H9N2 Influenza viruses:Were they the donors of the "internal" genes of H5N1 viruses in Hong Kong?[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16):9363-9367. [20] KHOURY M, CUENCA J, CRUZ F F, et al. Current status of cell-based therapies for respiratory virus infections:Applicability to COVID-19[J]. European Respiratory Journal, 2020, 55(6):2000858. [21] MORENS D M, TAUBENBERGER J K, FAUCI A S.Predominant role of bacterial pneumonia as a cause of death in pandemic influenza:Implications for pandemic influenza preparedness[J]. Journal of Infectious Diseases, 2008, 198(7):962-970. [22] CHOCKALINGAM A K, HICKMAN D, PENA L, et al. Deletions in the neuraminidase stalk region of H2N2 and H9N2 Avian influenza virus subtypes do not affect postinfluenza secondary bacterial pneumonia[J]. Journal of Virology, 2012, 86(7):3564-3573. [23] SOLIMAN G S, ABU-YOUSSEF R M, SALEIB B F, et al. Awareness of world health organization methicillin-resistant Staphylococcus aureus guidelines at Alexandria University hospitals[J]. Eastern Mediterranean Health Journal, 2013, 19(7):622-628. [24] MANARA S, PASOLLI E, DOLCE D, et al. Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a paediatric hospital[J]. Genome Medicine, 2018, 10(1):82-100. [25] PINTO R M, LOPES-DE-CAMPOS D, MARTINS M C L, et al. Impact of nanosystems in Staphylococcus aureus biofilms treatment[J]. FEMS Microbiology Reviews, 2019, 43(6):622-641. [26] TASHIRO M, CIBOROWSKI P, KLENK H D, et al. Role of Staphylococcus protease in the development of influenza pneumonia[J]. Nature, 1987, 325(6104):536-537. [27] KISHIDA N, SAKODA Y, ETO M, et al. Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 Influenza A virus infection in chickens[J]. Archives of Virology, 2004, 149(11):2095-2104. [28] BARBOSA E V, CARDOSO C V, SILVA R C F, et al. Ornithobacterium rhinotracheale:An update review about an emerging poultry pathogen[J]. Veterinary Science, 2019, 7(1):3-15. [29] PAN Q, LIU A, ZHANG F, et al. Co-infection of broilers with Ornithobacterium rhinotracheale and H9N2 Avian influenza virus[J]. BMC Veterinary Research, 2012, 8:104-110. [30] ZHANG B S, LI J L, ZHU Q, et al. Co-infection of H9N2 Influenza virus and Pseudomonas aeruginosa contributes to the development of hemorrhagic pneumonia in mink[J]. Veterinary Microbiology, 2020, 240:108542. [31] 张伯顺.H9N2流感病毒与绿脓杆菌共感染致水貂出血性肺炎的病程演化研究[D].泰安:山东农业大学, 2020. ZHANG B S.Effects of co-infection of H9N2 Influenza virus and Pseudomonas aeruginosa on the development of hemorrhagic pneumonia in mink[D].Tai'an:Shandong Agricultural University, 2020.(in Chinese) [32] JAMIESON A M, YU S, ANNICELLI C H, et al. Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection[J]. Cell Host & Microbe, 2010, 7(2):103-114. [33] 郭长明, 吴植, 朱善元, 等.江苏及周边地区鸭致病性大肠杆菌血清型、毒力因子及耐药研究[J]. 中国畜牧兽医, 2020, 47(12):4076-4084. GUO C M, WU Z, ZHU S Y, et al. Serotypes, virulence factors and antibiotic resistance of duck pathogenic Escherichia coli in Jiangsu province and its surrounding areas[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(12):4076-4084.(in Chinese) [34] SUN Y, LIU J.H9N2 Influenza virus in China:A cause of concern[J]. Protein & Cell, 2015, 6(1):18-25. [35] DAMIAN M S, CZOSNYKA M.Near infrared spectroscopy monitoring——Opening a window on the first 24 h after cardiac arrest?[J]. Resuscitation, 2014, 85(4):452-453. [36] ZHANG X, ZHAO Q, WU C, et al. Nitrate is crucial for the proliferation of gut Escherichia coli caused by H9N2 AIV infection and effective regulation by Chinese herbal medicine Ageratum-liquid[J]. Frontiers in Microbiology, 2020, 11:555739. [37] MOSLEH N, DADRAS H, ASASI K, et al. Evaluation of the timing of the Escherichia coli co-infection on pathogenecity of H9N2 Avian influenza virus in broiler chickens[J]. Iranian Journal of Veterinary Research, 2017, 18(2):86-91. [38] 王欢.鸡TGF-β1在H9N2亚型禽流感病毒诱导大肠杆菌继发感染中的作用[D].泰安:山东农业大学, 2020. WANG H.The role of chicken TGF-β1 in the secondary infection of Escherichia coli induced by H9N2 type Avian influenza virus[D].Tai'an:Shandong Agricultural University, 2020.(in Chinese) [39] QI X, LIU C, LI R, et al. Modulation of the innate immune-related genes expression in H9N2 Avian influenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation[J]. Research Veterinary Science, 2017, 111:36-42. [40] WANG J, LI Y, YIN Y.Respiratory phagocytes are implicated in enhanced colibacillosis in chickens co-infected with Influenza virus H9N2 and Escherichia coli[J]. British Poultry Science, 2018, 59(2):160-165. [41] 张启龙, 栗云鹏, 傅彩霞, 等.1株信鸽源鼠伤寒沙门氏菌的分离鉴定及其耐药性和毒力分析[J]. 中国畜牧兽医, 2021, 48(1):338-347. ZHANG Q L, LI Y P, FU C X, et al. Isolation, identification, drug resistance and virulence analysis of one Salmonella Typhimurium strain from racing pigeons[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(1):338-347.(in Chinese) [42] ARAFAT N, ABD EL RAHMAN S, NAGUIB D, et al. Co-infection of Salmonella Enteritidis with H9N2 Avian influenza virus in chickens[J]. Avian Pathology, 2020, 49(5):496-506. [43] CHU J, GUO Y, XU G, et al. Chlamydia psittaci triggers the invasion of H9N2 Avian influenza virus by impairing the functions of chicken macrophages[J]. Animals Basel, 2020, 10(4):722-735. [44] CHU J, ZHANG Q, ZHANG T, et al. Chlamydia psittaci infection increases mortality of Avian influenza virus H9N2 by suppressing host immune response[J]. Scientific Reports, 2016, 6:29421. [45] HAGHIGHAT-JAHROMI M, ASASI K, NILI H, et al. Coinfection of Avian influenza virus (H9N2 subtype) with infectious bronchitis live vaccine[J]. Archives of Virology, 2008, 153(4):651-655. [46] 闫延华, 陈彤, 陈泽文, 等.中药复方板青可溶性粉防治鸡传染性支气管炎的效果研究[J]. 中国畜牧兽医, 2020, 47(10):3379-3388. YAN Y H, CHEN T, CHEN Z W, et al. Study on the preventive and therapeutic effect of compound Banqing soluble powder on chicken infectious bronchitis[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(10):3379-3388.(in Chinese) [47] RIM A, NACIRA L, JIHENE N, et al. Viral interference between H9N2-low pathogenic Avian influenza virus and avian Infectious bronchitis virus vaccine strain H120 in vivo[J]. Comparative Immunology Microbiology and Infectious Diseases, 2019, 65:219-225. [48] HASSAN K E, ALI A, SHANY S A S, et al. Experimental co-infection of infectious bronchitis and low pathogenic Avian influenza H9N2 viruses in commercialbroilerchickens[J]. Research Veterinary Science, 2017, 115:356-362. [49] HUANG Q, WANG K, PAN L, et al. Co-infection of H9N2 subtype Avian influenza virus and Infectious bronchitis virus decreases SP-A expression level in chickens[J]. Veterinary Microbiology, 2017, 203:110-116. [50] ELADL A H, MOSAD S M, EL-SHAFEI R A, et al. Immunostimulant effect of a mixed herbal extract on Infectious bursal disease virus (IBDV) vaccinated chickens in the context of a co-infection model of Avian influenza virus H9N2 and IBDV[J]. Comparative Immunology Microbiology and Infectious Diseases, 2020, 72:101505. [51] RANJBAR V R, MOHAMMADI A, DADRAS H.Infectious bursal disease virus suppresses H9N2 avian influenza viral shedding in broiler chickens[J]. British Poultry Science, 2019, 60(5):493-498. [52] BONFANTE F, CATTOLI G, LEARDINI S, et al. Synergy or interference of a H9N2 Avian influenza virus with a velogenic Newcastle disease virus in chickens is dose dependent[J]. Avian Pathology, 2017, 46(5):488-496. [53] FRANCA M, HOWERTH E W, CARTER D, et al. Co-infection of mallards with low-virulence Newcastle disease virus and low-pathogenic Avian influenza virus[J]. Avian Pathology, 2014, 43(1):96-104. [54] ABDELAZIZ A M, MOHAMED M H A, FAYEZ M M, et al. Molecular survey and interaction of common respiratory pathogens in chicken flocks (field perspective)[J]. Veterinary World, 2019, 12(12):1975-1986. [55] 谢军, 孙英杰, 周昌娈, 等.禽流感病毒H9N2与新城疫病毒在鸡成纤维细胞中共感染对病毒复制的影响[J]. 畜牧兽医学报, 2018, 49(11):2521-2528. XIE J, SUN Y J, ZHOU C L, et al. The effect of co-infection of H9N2 subtype Avian influenza virus and Newcastle disease virus on virus replication in the DF-1 of chicken embryo fibroblasts[J]. Chinese Journal of Animal and Veterinary Sciences, 2018, 49(11):2521-2528.(in Chinese) [56] 李志杰, 李舫, 王莉莉, 等.雏鹅小鹅瘟病毒与H9N2禽流感病毒混合感染的诊治[J]. 畜牧与兽医, 2017, 49(3):123-124. LI Z J, LI F, WANG L L, et al. Comprehensive diagnosis and treatment of mixed infection of Gosling plague virus and H9N2 Avian influenza virus[J]. Animal Husbandry & Veterinary Medicine, 2017, 49(3):123-124.(in Chinese) [57] LI X, LIU B, MA S, et al. High frequency of reassortment after co-infection of chickens with the H4N6 and H9N2 Influenza A viruses and the biological characteristics of the reassortants[J]. Veterinary Microbiology, 2018, 222:11-17. [58] SUTTIE A, KARLSSON E A, DENG Y M, et al. Influenza A (H5N1) viruses with A (H9N2) single gene (matrix or PB1) reassortment isolated from Cambodian live bird markets[J]. Virology, 2018, 523:22-26. [59] PARVIN R, BEGUM J A, NOORUZZAMAN M, et al. Review analysis and impact of co-circulating H5N1 and H9N2 Avian influenza viruses in Bangladesh[J]. Epidemiology and Infection, 2018, 146(10):1259-1266. [60] KIM S H.Challenge for one health:Co-circulation of zoonotic H5N1 and H9N2 Avian influenza viruses in Egypt[J]. Viruses, 2018, 10(3):121-136. [61] ARAI Y, IBRAHIM M S, ELGENDY E M, et al. Genetic compatibility of reassortants between avian H5N1 and H9N2 Influenza viruses with higher pathogenicity in mammals[J]. Journal of Virology, 2019, 93(4):e01969-18. [62] SUN H, XIAO Y, LIU J, et al. Prevalent Eurasian avian-like H1N1 Swine influenza virus with 2009 pandemic viral genes facilitating human infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29):17204-17210. [63] SMITH G J, VIJAYKRISHNA D, BAHL J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 Influenza A epidemic[J]. Nature, 2009, 459(7250):1122-1125. [64] HE L, WU Q, JIANG K, et al. Differences in transmissibility and pathogenicity of reassortants between H9N2 and 2009 pandemic H1N1 Influenza A viruses from humans and swine[J]. Archives of Virology, 2014, 159(7):1743-1754. |
[1] | LIANG Jianyong, LIU Yang, LI Jiuyue, GAO Yuan, ZHAO Xiaojuan, JIAO Linmiao, QI Ligeer, XUE Shuyuan. Feed Utilization Technology of Straw with "Wall Breaking and Bacteria-Enzyme" Synergism Treatment and Its Application in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3059-3069. |
[2] | CHEN Zhian, ZHANG Beiwen, HE Minjia, CHEN Meichun, WENG Chengzhen, HUANG Xinxin, LI Hongxi, ZENG Zhongwen, CHEN Baoliang, QIU Longxin, CHEN Hongbo, LI Xiaobing. Genetic Variation and Codon Usage Bias Analysis of Porcine Pseudorabies Virus gE Gene [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3264-3275. |
[3] | ZHANG Limeng, LI Runting, SONG Yue, NIE Xiaoning, KONG Li, SHAN Jingwei, XU Yingying, WANG Linqing, CHEN Longxin. Construction and Screening of Single Chain Antibody Library of Porcine Parvovirus NS1 Protein [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3276-3285. |
[4] | RUAN Shihui, LIU Chunyan, WEI Yangyang, HE Yiyi, WU Qiwen, XIONG Yunxia, YANG Xuefen, WANG Li, YI Hongbo. Effect of PDCoV on the Extracellular Matrix of the Intestine and Its Dynamic Changes in Weaned Piglets [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3297-3307. |
[5] | WANG Jing, SUN Zhigang, LI Xinyang, LYU Ruoyi, CAI Ziwen, ZHANG Wenjing, HOU Xiaolin, LIU Xiaoye. Study on the in vitro Antibacterial Effect of Isobavachalcone Combined with Antibacterials [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3386-3397. |
[6] | WANG Tao, XUE Ke, ZHANG Guocheng, XU Ziyi, PENG Chengyang, LIANG Xicai, CUI Ziyin, XIA Zhiqiang, ZHANG Zehui. Research Progress on Antibacterial Effect of Epigallocatechin Gallate Based on Anti-virulence Strategy [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3429-3439. |
[7] | ZHANG Bingyan, FAN Rui, FENG Shutang, JIA Junting, ZHANG Jianbin, MA Yuyuan. Whole Genome Resequencing Analysis of PERV Non-transmitting Zhong Xu Wuzhishan Mini-pig Inbred Line [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2459-2467. |
[8] | WEI Huangsiwu, ZHANG Xingyi, HUANG Xiaohua, LIU Changjin, WU Wenjie, SHEN Zhengqiao, LUO Feng, DENG Shunzhou. Eukaryotic Expression of Porcine Rotavirus VP6 Protein and Preparation and Application of Its Monoclonal Antibody [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2750-2761. |
[9] | LIU Dan, GAO Jianshuai, ZHANG Boyuan, LI Huitong, JIANG Hui, FAN Xuezheng, ZHANG Guangzhi, DING Jiabo, XIONG Tao, SHEN Qingchun. Preparation of West Nile Virus Armored RNA Quality Control Product Based on MS2 Bacteriophage [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2762-2771. |
[10] | ZHAO Yilong, TANG Na, JING Changhua, XU Qingqing, YIN Xiusheng, WANG Haiming, SUN Jing, LIN Panpan, DONG Lin, LIU Jishan, CAO Rongfeng. Isolation,Identification and Biological Characteristics of a Strain of Lumpy Skin Disease Virus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2790-2799. |
[11] | TONG Jingdi, LI Xiaohan, REN Meiyi, SONG Deyuan, ZHAO Yan, SONG Jinshang, SU Yalan, WEN Xiangfu, CHENG Jia, LIU Mingchao. Isolation and Identification of Leuconostoc from Dairy Farms and Analysis of Their Biological Characteristics [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2874-2883. |
[12] | SONG Xinghui, YANG Pengkun, DONG Xuanzhi, CHEN Gaokun, YANG Beibei, CAI Yilin, LIU Jian, LYU Huifang, ZHAO Li, ZHANG Xiaozhan. Diagnosis,Treatment and Pathogen Analysis of Mixed Infection of Riemerella anatipestifer, Escherichia coli and Duck Circovirus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2935-2945. |
[13] | ZHONG Weilin, YAO Jianhui, WEI Xiaoqi, YAN Guangzhi, CHEN Shengnan, LIU Mingjie, HUANG Liangzong. Diagnosis and Genetic Evolution Analysis of PCV2d Infection in a Pig Farm in Guangdong [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2781-2789. |
[14] | CAI Yucheng, WU Guanyuan, YANG Haidong, FANG Yinuo, CHEN Zhisheng, ZHAN Xiaoshu. Mechanisms and Current Applications of Probiotics in Animal Health Management [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2101-2114. |
[15] | HUANG Xiaojiu, LEI Lei, PENG Xiaoye, WANG Kaixin, CHEN Yingyi, WANG Jixian, WANG Yuge, DUAN Deyong, YANG Yi, WANG Aibing. Construction of a IPEC-J2 Cell Line Stably Overexpressing NM-ⅡA Tail and Its Effect on Porcine Epidemic Diarrhea Virus Infection [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2243-2252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||