China Animal Husbandry & Veterinary Medicine ›› 2024, Vol. 51 ›› Issue (12): 5218-5224.doi: 10.16431/j.cnki.1671-7236.2024.12.010
• Physiological and Biochemical • Previous Articles Next Articles
ZHANG Bo, GENG Yang, LI Tianzun, AO Yingnan, LU Yulai, WU Yinga, QI Zhili
Received:
2024-03-25
Online:
2024-12-05
Published:
2024-12-02
CLC Number:
ZHANG Bo, GENG Yang, LI Tianzun, AO Yingnan, LU Yulai, WU Yinga, QI Zhili. Research Progress on the Mechanisms of Autophagy in Mastitis,Ketosis and Fatty Liver in Dairy Cows[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(12): 5218-5224.
[1] RAVANAN P, SRIKUMAR I F, TALWAR P.Autophagy:The spotlight for cellular stress responses[J].Life Sciences, 2017, 188:53-67. [2] KIM K H, LEE M S.Autophagy—Key player in cellular and body metabolism[J].Nature Reviews Endocrinology, 2014, 10:322-337. [3] ZHU C L, YAO R Q, LI L X, et al.Mechanism of mitophagy and its role in sepsis induced organ dysfunction:A review[J].Frontiers in Cell and Developmental Biology, 2021, 9:1498. [4] MIZUSHIMA N, KOMATSU M.Autophagy:Renovation of cells and tissues[J].Cell, 2011, 147:728-741. [5] CHU C T.Mechanisms of selective autophagy and mitophagy:Implications for neurodegenerative diseases[J].Neurobiology of Disease, 2019, 122:23-34. [6] YIM W W Y, MIZUSHIMA N.Lysosome biology in autophagy[J].Cell Discovery, 2020, 6:6. [7] LEE J Y, KOGA H, KAWAGUCHI Y, et al.HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy[J].The EMBO Journal, 2010, 29:969-980. [8] CUERVO A M, WONG E.Chaperone-mediated autophagy:Roles in disease and aging[J].Cell Research, 2014, 24:92-104. [9] WANG Y, ZHANG H.Regulation of autophagy by mTOR signaling pathway[J].Advances in Experimental Medicine and Biology, 2019, 1206:67-83. [10] KHAMBU B, YAN S, HUDA N, et al.Autophagy in non-alcoholic fatty liver disease and alcoholic liver disease[J].Liver Research, 2018, 9:4. [11] PEÑA-MARTINEZ C, RICKMAN A D, HECKMANN B L.Beyond autophagy:LC3-associated phagocytosis and endocytosis[J].Science Advances, 2022, 8:n1702. [12] KHAN S, DHAMA K, TIWARI R, et al.Advances in therapeutic and managemental approaches of bovine mastitis:A comprehensive review[J].Veterinary Quarterly, 2021, 41(1):107-136. [13] HE W, MA S, LEI L.Prevalence, etiology, and economic impact of clinical mastitis on large dairy farms in China[J].Veterinary Microbiology, 2020, 242:108570. [14] 王新慧.红景天苷对奶牛乳腺炎的调控作用及机制探究[D].武汉:华中农业大学, 2023.WANG X H.Investigation on the regulatory effect and mechanism of salidroside on dairy cow mastitis[D].Wuhan:Huazhong Agricultural University, 2023.(in Chinese) [15] IDRISS S E, TAN AČG IN V, FOLT AY'G S V, et al.Relationship between mastitis causative pathogens and somatic cell counts in dairy cows[J].Potravinarstvo, 2013, 7(1):207-212. [16] 高红梅, 李云, 李玉卡, 等.奶牛临床型乳腺炎发生机制及其综合防治措施[J].今日畜牧兽医, 2020, 36:93-94.GAO H M, LI Y, LI Y K, et al.Mechanism of clinical mastitis in dairy cows and comprehensive prevention and control measures[J].Modern Animal Husbandry and Veterinary Medicine, 2020, 36:93-94.(in Chinese) [17] 张博, 耿阳, 敖英男, 等.奶牛乳腺炎添加剂营养干预机制研究进展[J].中国奶牛, 2023,6:1-6.ZHANG B, GENG Y, AO Y N, et al.Research progress on nutritional intervention mechanism of dairy cow mastitis additives[J].China Dairy Cattle, 2023, 6:1-6.(in Chinese) [18] ZHANG Y, CUI Y, WANG L, et al.Autophagy promotes osteoclast podosome disassembly and cell motility athrough the interaction of kindlin3 with LC3[J].Cellular Signalling, 2019, 67(7):109505. [19] CAI J, LI J, ZHOU Y, et al.Staphylococcus aureus facilitates its survival in bovine macrophages by blocking autophagic flux[J].Journal of Cellular and Molecular Medicine, 2020, 24(6):3460-3468. [20] GENG N, WANG X, YU X, et al.Staphylococcus aureus avoids autophagy clearance of bovine mammary epithelial cells by impairing lysosomal function[J].Frontiers in Immunology, 2020, 11:746. [21] GUO W, LIU J, LI W, et al.Niacin alleviates dairy cow mastitis by regulating the GPR109A/AMPK/NRF2 signaling pathway[J].International Journal of Molecular Sciences, 2020, 21(9):3321. [22] LIU S, GUO W, JIA Y, et al.Menthol targeting AMPK alleviates the inflammatory response of bovine mammary epithelial cells and restores the synthesis of milk fat and milk protein[J].Frontiers in Immunology, 2021,12:782989. [23] WANG Z, LAN R, XU Y, et al.Taurine alleviates Streptococcus uberis-induced inflammation by activating autophagy in mammary epithelial cells[J].Frontiers in Immunology, 2021, 12:631113. [24] ZHANG X, ZHANG H, GAO Y, et al.Forsythoside A regulates autophagy and apoptosis through the AMPK/mTOR/ULK1 pathway and alleviates inflammatory damage in MAC-T cells[J].International Immunopharmacology, 2023, 118:110053. [25] LI Y, ZHU Y, CHU B, et al.Lactobacillus rhamnosus GR-1 prevents Escherichia coli-induced apoptosis through PINK1/Parkin-mediated mitophagy in bovine mastitis[J].Frontiers in Immunology, 2021:12, 715098. [26] TAO L, LIU K, LI J, et al.Selenomethionine alleviates NF-κB-mediated inflammation in bovine mammary epithelial cells induced by Escherichia coli by enhancing autophagy[J].International Immunopharmacology, 2022, 110:108989. [27] FIORE E, LISUZZO A, LAGHI L, et al.Serum metabolomics assessment of etiological processes predisposing ketosis in water buffalo during early lactation[J]. Journal of Dairy Science, 2023, 106(5):3465-3476. [28] DUFFIELD T F, SANDALS D, LESLIE K E.Efficacy of monensin for the prevention of subclinical ketosis in lactating dairy cows[J].Journal of Dairy Science, 1998, 81(11):2866. [29] ITLE A J, HUZZEY J M, WEARY D M, et al.Clinical ketosis and standing behavior in transition cows[J].Journal of Dairy Science, 2015, 98:128-134. [30] PENG Z, LI X, WANG Z, et al.The effects of non-esterified fatty acids and β-hydroxybutyrate on the hepatic CYP2E1 in cows with clinical ketosis[J].The Journal of Dairy Research, 2019, 86(1):68-72. [31] DUFFIELD T F, LISSEMORE K D, MCBRIDE B W, et al.Impact of hyperketonemia in early lactation dairy cows on health and production[J].Journal of Dairy Science, 2009, 92(2):571-580. [32] LOIKLUNG C, SUKON P, THAMRONGYOSWITTAYAKUL C.Global prevalence of subclinical ketosis in dairy cows:A systematic review and Meta-analysis[J].Research in Veterinary Science,2022, 144:66-76. [33] ZHANG D, WANG W, SUN X, et al.AMPK regulates autophagy by phosphorylating BECN1 at threonine 388[J].Autophagy, 2016, 12:1447-1459. [34] DIKIC I, ELAZAR Z.Mechanism and medical implications of mammalian autophagy[J].Nature Reviews Molecular Cell Biology, 2018, 19:349-364. [35] LI X, LI G, DU X, et al.Increased autophagy mediates the adaptive mechanism of the mammary gland in dairy cows with hyperketonemia[J].Journal of Dairy Science, 2020, 103(3):2545-2555. [36] SINHA R A, FARAH B L, SINGH B K, et al.Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice[J].Hepatology, 2014, 59:1366-1380. [37] XU Q, FAN Y, LOOR J J, et al.Adenosine 5'-monophosphate-activated protein kinase ameliorates bovine adipocyte oxidative stress by inducing antioxidant responses and autophagy[J].Journal of Dairy Science, 2021, 104(4):4516-4528. [38] YU H, FAN M, CHEN X, et al.Activated autophagy-lysosomal pathway in dairy cows with hyperketonemia is associated with lipolysis of adipose tissues[J].Journal of Dairy Science, 2022, 105(8):6997-7010. [39] XU Q, FAN Y, MAUCK J, et al.Role of diacylglycerol O-acyltransferase 1(DGAT1) in lipolysis and autophagy of adipose tissue from ketotic dairy cows[J].Journal of Dairy Science, 2024, 107(7):5150-5161. [40] ZAHRAZADEH M, RIASI A, FARHANGFAR H, et al.Effects of close-up body condition score and selenium-vitamin E injection on lactation performance, blood metabolites, and oxidative status in high-producing dairy cows[J].Journal of Dairy Science, 2018, 101(11):10495-10504. [41] YUE K, PU X, LOOR J J, et al.Impaired autophagy aggravates oxidative stress in mammary gland of dairy cows with clinical ketosis[J].Journal of Dairy Science, 2022, 105(7):6030-6040. [42] VINCOW E S, THOMAS R E, MERRIHEW G E, et al.Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective[J].Autophagy, 2019, 15:1592-1605. [43] SHEN T, XU F, FANG Z, et al.Hepatic autophagy and mitophagy status in dairy cows with subclinical and clinical ketosis[J].Journal of Dairy Science, 2021, 104(4):4847-4857. [44] ZHU Y, LIU G, DU X, et al.Expression patterns of hepatic genes involved in lipid metabolism in cows with subclinical or clinical ketosis[J].Journal of Dairy Science, 2019, 102(2):1725-1735. [45] YANG Y, JIANG S, YANG J, et al.β-hydroxybutyrate impairs the directionality of migrating neutrophil through inhibiting the autophagy-dependent degradation of Cdc42 and Rac1 in ketotic cows[J].Journal of Dairy Science, 2023, 106(11):8005-8016. [46] BOBE G, YOUNG J W, BEITZ D C.Invited review:Pathology, etiology, prevention, and treatment of fatty liver in dairy cows[J].Journal of Dairy Science, 2004, 87(10):3105-3124. [47] RINGSEIS R, GESSNER D K, EDER K.Molecular insights into the mechanisms of liver-associated diseases in early-lactating dairy cows:Hypothetical role of endoplasmic reticulum stress[J].Journal of Animal Physiology and Animal Nutrition, 2015,99:626-645. [48] LI P, LI X B, FU S X, et al.Alterations of fatty acid β-oxidation capability in the liver of ketotic cows[J].Journal of Dairy Science, 2012, 95(4):1759-1766. [49] SONG Y, LI N, GU J, et al.β-hydroxybutyrate induces bovine hepatocyte apoptosis via an ROS-p38 signaling pathway[J].Journal of Dairy Science, 2016, 99(11):9184-9198. [50] HE A, CHEN X, TAN M, et al.Acetyl-CoA derived from hepatic peroxisomal β-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation[J]. Molecular Cell, 2020, 79:30-42. [51] DING H, GE G, TSENG Y, et al.Hepatic autophagy fluctuates during the development of non-alcoholic fatty liver disease[J].Annals of Hepatology, 2020, 19:516-522. [52] YANG L, LI P, FU S, et al.Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance[J].Cell Metabolism, 2010, 11:467-478. [53] CHEN M, LOOR J J, ZHAI Q, et al.Short communication:Enhanced autophagy activity in liver tissue of dairy cows with mild fatty liver[J].Journal of Dairy Science, 2020, 103(4):3628-3635. [54] DU X, LIU G, LOOR J J, et al.Impaired hepatic autophagic activity in dairy cows with severe fatty liver is associated with inflammation and reduced liver function[J].Journal of Dairy Science, 2018, 101(12):11175-11185. [55] DU X, CHEN M, FANG Z, et al.Evaluation of hepatic AMP-activated protein kinase (AMPK), mechanistic target of rapamycin kinase complex 1(mTORC1) and autophagy-lysosomal pathway in cows with mild or moderate fatty liver[J].Journal of Dairy Science, 2024, 107(5):3269-3279. [56] DONG J, YUE K, LOOR J J, et al.Increased adipose tissue lipolysis in dairy cows with fatty liver is associated with enhanced autophagy activity[J].Journal of Dairy Science, 2022, 105(2):1731-1742. [57] ZHAO C, WU B, LI J, et al.AdipoRon alleviates fatty acid-induced lipid accumulation and mitochondrial dysfunction in bovine hepatocytes by promoting autophagy[J].Journal of Dairy Science, 2023, 106(8):5763-5774. [58] 李胜开, 刘雨琪, 叶添梅, 等.过瘤胃胆碱在围产期奶牛的应用研究进展[J].乳业科学与技术, 2015, 38(6):27-30.LI S K, LIU Y Q, YE T M, et al.Research progress on the application of rumen choline in perinatal dairy cows[J].Dairy Science and Technology, 2015, 38(6):27-30.(in Chinese) [59] ARSHAD U, HUSNAIN A, POINDEXTER M B, et al.Effect of source and amount of rumen-protected choline on hepatic metabolism during induction of fatty liver in dairy cows[J].Journal of Dairy Science, 2023, 106(10):6860-6879. [60] PENG Z, ZHAO C, DU X, et al.Autophagy induced by palmitic acid regulates neutrophil adhesion through the granule-dependent degradation of αMβ2 integrin in dairy cows with fatty liver[J].Frontiers in Immunology, 2021, 12:726829. |
[1] | ZHAO Jinghong, MA Hui, LIU Jintao, MIAO Renfang, LIU Hongzhi, LIU Duncheng, QU Yongli. Effects of Supplemental Light on Blood Endocrine Hormone Concentrations and Circadian Rhythm Changes in Late-gestation Holstein Breeding Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3178-3189. |
[2] | LIU Jijun, WANG Fengbo, WEI Feng, JIN Yaping, ZHANG Haisen, CHEN Huatao. Research Progress on the Role of Circadian Clock in Regulating Glucose and Lipid Metabolism Homeostasis of Ketosis in Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3449-3458. |
[3] | LI Tuo, DU Yuanyuan, QU Lei, LI Longping. Isolation,Identification and Characterization of Specific Bacteriophage of Staphylococcus aureus from Bovine Mastitis [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2800-2808. |
[4] | LIU Dandan, LUO jie, GAO Hanya, XU Liyina, HAO Baoshan, WANG Xin, ZHANG Wei. Optimization of the Extraction Process of Crude Polysaccharides from Nymphaea candida and Its Therapeutic Effect on Mouse Mastitis Induced by Staphylococcus aureus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2818-2829. |
[5] | TONG Jingdi, LI Xiaohan, REN Meiyi, SONG Deyuan, ZHAO Yan, SONG Jinshang, SU Yalan, WEN Xiangfu, CHENG Jia, LIU Mingchao. Isolation and Identification of Leuconostoc from Dairy Farms and Analysis of Their Biological Characteristics [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2874-2883. |
[6] | LIU Zhixu, HAN Wenchang, LI Yanqin, ZHANG Liwen, LIU Yan, YUAN Shaowei, LIJianbin, WANG Xiao, CAO Rongfeng. Study on the Correlation Between β-lactase blaZ Gene and Microorganisms in Milk of Cows with Latent Mastitis in Shandong Region [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2318-2327. |
[7] | HAN Yurun, SHI Yuangang, KANG Xiaolong. Influencing Factors of Ruminating Behavior and the Application of Intelligent Monitoring Methods in Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1554-1566. |
[8] | LIU Tuo, CHENG Zhiqiang, CHENG Zhe, ZANG Changjiang, NAN Bingyu, LI Tao, LI Xiaobin, LI Yunmeng, QIU Yaqi, YAN Fayu, WU Hairong, YUAN Dong, WANG Yongli, LIU Wentao. Effects of Nicotinamide on Rumen Fermentation Parameters,Microbial Protein Yield and Microflora in Lactating Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 593-604. |
[9] | REN Meiyi, LIANG Hongxiu, LI Can, FENG Mingque, XIE Qinna, SONG Deyuan, LIU Mingchao, GAO Jian, CHENG Jia. Differential Analysis of Mastitis Model in Mice Infected with Klebsiella pneumoniae of Different ST Types [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 422-431. |
[10] | MA Hongpeng, SHAO Wei, LOU Xiaoxiao, GAO Jiaojiao, MA Xianlan, CHEN He, ZHENG Nan, ZHAO Yankun. Prevalence and Drug Resistance of Escherichia coli Isolated from Dairy Cows in Some Areas of Xinjiang [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 470-480. |
[11] | YU Minghong, WANG Meng, GE Bingjie, YAN Kexin, WANG Wei, LIU Xinman, LIU Xiaotong, QIU Qian, SANG Rui, ZHANG Xuemei. Effect of Taraxasterol on Apoptosis and Autophagy of Chicken Primary Hepatocytes Induced by AFB1 [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(9): 3762-3770. |
[12] | LI Jinnan, WANG Yahui, DENG Tianyu, LIANG Mang, DU Lili, LI Keanning, XUE Qingqing, QIAN Li, GAO Xue, ZHANG Lupei, ZHU Bo, CHEN Yan, WANG Zezhao, LI Junya, GAO Huijiang. Cloning,Bioinformatics Analysis and Tissue Expression Profile of Coding Region of Bovine MED28 Gene [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(8): 3225-3236. |
[13] | YAO Weijia, LUO Chunhai, LIU Jiajin, WANG Wei, LI Danyang, LIU Bingqi, FU Shixin. Effect of Overexpression of miRNA-424-5p Targeting AKT3 on Apoptosis of Endometrial Epithelial Cells in Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(8): 3635-3642. |
[14] | SU Yuanyuan, YU Chengyuan, ZHANG Mixia, ZHANG Yanjun, ZHUANG Pengwei. Study on the Efficacy of Jianpi Qushi Decoction in the Treatment of Nonalcoholic Fatty Liver in Rats [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(8): 3662-3675. |
[15] | HE Xingli, ZHOU Peiyao, ZHANG Xiaoxue, MOU Quanzhou, LI Yang, WANG Zhaoyuan, LIU Peng, WANG Zi, SONG Yangyang, LI Xiaolin, SHEN Binglei. Effect of Staphylococcus aureus and Staphylococcus epidermidis on the Secretion of Inflammatory Factors by Neutrophils in Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(8): 3676-3686. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||