China Animal Husbandry & Veterinary Medicine ›› 2024, Vol. 51 ›› Issue (1): 242-254.doi: 10.16431/j.cnki.1671-7236.2024.01.025
• Preventive Veterinary Medicine • Previous Articles Next Articles
JIA Yusheng, LIAO Ming, DAI Manman
Revised:
2023-09-04
Online:
2024-01-05
Published:
2023-12-27
CLC Number:
JIA Yusheng, LIAO Ming, DAI Manman. Research Progress on the Relationship Between the Molecular Structure of Chicken MHC and Disease Resistance[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(1): 242-254.
[1] KOYANAGI N, KAWAGUCHI Y.Evasion of the cell-mediated immune response by Alpha herpes viruses[J].Viruses-Basel, 2020, 12(12):1354. [2] TROWSDALE J, KNIGHT J C.Major histocompatibility complex genomics and human disease[J].Annual Review of Genomics and Human Genetics, 2013, 14:301-323. [3] WEI X, WANG S, LI Z, et al.Peptidomes and structures illustrate two distinguishing mechanisms of alternating the peptide plasticity caused by swine MHC class Ⅰ micropolymorphism[J].Frontiers in Immunology, 2021, 12:592447. [4] YUE C, XIANG W, HUANG X, et al.Mooring stone-like Arg(114) pulls diverse bulged peptides:First insight into African swine fever virus-derived T cell epitopes presented by swine major histocompatibility complex class Ⅰ[J].Journal of Virology, 2022, 96(4):e137821. [5] WEI X, WANG S, WANG S, et al.Structure and peptidomes of swine MHC class Ⅰ with long peptides reveal the cross-species characteristics of the novel N-terminal extension presentation mode[J].Journal of Immunology, 2022, 208(2):480-491. [6] KAUFMAN J.Generalists and specialists:A new view of how MHC class Ⅰ molecules fight infectious pathogens[J].Trends in Immunology, 2018, 39(5):367-379. [7] TREGASKES C A, KAUFMAN J.Chickens as a simple system for scientific discovery:The example of the mhc[J].Molecular Immunology, 2021, 135:12-20. [8] BRILES W E, MCGIBBON W H, IRWIN M R.On multiple alleles effecting cellular antigens in the chicken[J].Genetics, 1950, 35(6):633-652. [9] WALLNY H J, AVILA D, HUNT L G, et al.Peptide motifs of the single dominantly expressed class Ⅰ molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens[J].Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5):1434-1439. [10] KOCH M, CAMP S, COLLEN T, et al.Structures of an MHC class Ⅰ molecule from B21 chickens illustrate promiscuous peptide binding[J].Immunity, 2007, 27(6):885-899. [11] LA GRUTA N L, TURNER S J.T cell mediated immunity to influenza:Mechanisms of viral control[J].Trends in Immunology, 2014, 35(8):396-402. [12] WIECZOREK M, ABUALROUS E T, STICHT J, et al.Major histocompatibility complex (MHC) class Ⅰ and MHC class Ⅱ proteins:Conformational plasticity in antigen presentation[J].Frontiers in Immunology, 2017, 8:292. [13] ZAMOYSKA R.CD4 and CD8:Modulators of T-cell receptor recognition of antigen and of immune responses?[J].Current Opinion in Immunology, 1998, 10(1):82-87. [14] 吴亚楠.四种低等脊椎动物pMHCⅠ复合体或β2m分子的晶体结构研究[D].北京:中国农业大学, 2017. WU Y N.Study on the crystal structures of pMHCⅠ complexes or β2m molecules in four lower vertebrates[D].Beijing:China Agricultural University, 2017.(in Chinese) [15] MITAKSOV V, FREMONT D H.Structural definition of the H-2Kd peptide-binding motif[J].Journal of Biological Chemistry, 2006, 281(15):10618-10625. [16] SAPER M A, BJORKMAN P J, WILEY D C.Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 a resolution[J].Journal of Molecular Biology, 1991, 219(2):277-319. [17] YIN Y, WANG X X, MARIUZZA R A.Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4[J].Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(14):5405-5410. [18] CHICZ R M, URBAN R G, LANE W S, et al.Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size[J].Nature, 1992, 358(6389):764-768. [19] ZAVALA-RUIZ Z, STRUG I, ANDERSON M W, et al.A polymorphic pocket at the P10 position contributes to peptide binding specificity in class Ⅱ MHC proteins[J].Chemistry & Biology, 2004, 11(10):1395-1402. [20] PARKER A, KAUFMAN J.What chickens might tell us about the MHC class Ⅱ system[J].Current Opinion in Immunology, 2017, 46:23-29. [21] ZAVALA-RUIZ Z, SUNDBERG E J, STONE J D, et al.Exploration of the p6/p7 region of the peptide-binding site of the human class Ⅱ major histocompatability complex protein HLA-DR1[J].Journal of Biological Chemistry, 2003, 278(45):44904-44912. [22] XIAO J, XIANG W, ZHANG Y, et al.An invariant arginine in common with MHC class Ⅱ allows extension at the C-terminal end of peptides bound to chicken MHC class Ⅰ[J].Journal of Immunology, 2018, 201(10):3084-3095. [23] ZHANG L, LI X, MA L, et al.A newly recognized pairing mechanism of the alpha- and beta-chains of the chicken peptide-MHC class Ⅱ complex[J].Journal of Immunology, 2020, 204(6):1630-1640. [24] MILLER M M, BACON L D, HALA K, et al.2004 nomenclature for the chicken major histocompatibility (B and Y) complex[J].Immunogenetics, 2004, 56(4):261-279. [25] AFRACHE H, TREGASKES C A, KAUFMAN J.A potential nomenclature for the immuno polymorphism database (IPD) of chicken MHC genes:Progress and problems[J].Immunogenetics, 2020, 72(1-2):9-24. [26] CHAPPELL P, MEZIANE E K, HARRISON M, et al.Expression levels of MHC class Ⅰ molecules are inversely correlated with promiscuity of peptide binding[J].eLife, 2015, 4:e5345. [27] 郝福星, 居元照, 金红岩, 等.畜禽MHCⅠ分子抗原结合槽研究进展[J].中国畜牧兽医, 2016, 43(8):2072-2080. HAO F X, JU Y Z, JIN H Y, et al.Research progress on livestock and poultry MHCⅠ antigen binding groove[J].China Animal Husbandry & Veterinary Medicine, 2016, 43(8):2072-2080.(in Chinese) [28] 王威.鸡MHCⅠ类分子蛋白的生物信息学分析[D].湘潭:湖南科技大学, 2018. WANG W.Bioinformatics analysis of chicken MHCⅠ proteins[D].Xiangtan:Hunan University of Science and Technology, 2018.(in Chinese) [29] LI X, ZHANG L, LIU Y, et al.Structures of the MHC-Ⅰ molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope[J].Journal of Biological Chemistry, 2020, 295(16):5292-5306. [30] GUILLAUME P, PICAUD S, BAUMGAERTNER P, et al.The C-terminal extension landscape of naturally presented HLA-Ⅰ ligands[J].Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(20):5083-5088. [31] MACLACHLAN B J, DOLTON G, PAPAKYRIAKOU A, et al.Human leukocyte antigen (HLA) class Ⅱ peptide flanking residues tune the immunogenicity of a human tumor-derived epitope[J].Journal of Biological Chemistry, 2019, 294(52):20246-20258. [32] ZHANG J, CHEN Y, QI J, et al.Narrow groove and restricted anchors of MHC class Ⅰ molecule BF2*0401 plus peptide transporter restriction can explain disease susceptibility of B4 chickens[J].Journal of Immunology, 2012, 189(9):4478-4487. [33] HAN L, WU S, ZHANG T, et al.A wider and deeper peptide-binding groove for the class Ⅰ molecules from B15 compared with B19 chickens correlates with relative resistance to Marek's disease[J].Journal of Immunology, 2023, 210(5):668-680. [34] LIU Y, CHEN R, LIANG R, et al.The combination of CD8αα and peptide-MHC-Ⅰ in a face-to-face mode promotes chicken γδT cells response[J].Frontiers in Immunology, 2020, 11:605085. [35] HALABI S, GHOSH M, STEVANOVIC S, et al.The dominantly expressed class Ⅱ molecule from a resistant MHC haplotype presents only a few Marek's disease virus peptides by using an unprecedented binding motif[J].PLoS Biology, 2021, 19(4):e3001057. [36] HENSEN L, ILLING P T, BRIDIE C E, et al.CD8+ T cell landscape in indigenous and non-indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph[J].Nature Communications, 2021, 12(1):2931. [37] 肖进.鸡MHCⅠ分子呈递病毒多肽的晶体结构及功能研究[D].北京:中国农业大学, 2017. XIAO J.Study on the crystal structure and function of chicken MHCⅠ presenting viral peptide[D].Beijing:China Agricultural University, 2017.(in Chinese) [38] ZHANG L, LI Z, TANG Z, et al.Efficient identification of Tembusu virus CT1 epitopes in inbred HBW/B4 ducks using a novel MHC class Ⅰ-restricted epitope screening scheme[J].Journal of Immunology, 2022, 209(1):145-156. [39] HALABI S, KAUFMAN J.New vistas unfold:Chicken MHC molecules reveal unexpected ways to present peptides to the immune system[J].Frontiers in Immunology, 2022, 13:886672. [40] CUMBERBATCH J A, BREWER D, VIDAVSKY I, et al.Chicken major histocompatibility complex class Ⅱ molecules of the B haplotype present self and foreign peptides[J].Animal Genetics, 2006, 37(4):393-396. [41] PURCELL A W, RAMARATHINAM S H, TERNETTE N.Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics[J].Nature Protocols, 2019, 14(6):1687-1707. [42] ROCK K L, REITS E, NEEFJES J.Present yourself! By MHC class Ⅰ and MHC class Ⅱ molecules[J].Trends in Immunology, 2016, 37(11):724-737. [43] CHEN L, ANTHONY A, OVEISSI S, et al.Broad-based CD4+ T cell responses to Influenza A virus in a healthy individual who lacks typical immunodominance hierarchy[J].Frontiers in Immunology, 2017, 8:375. [44] CHEN L, ZANKER D, XIAO K, et al.Immunodominant CD4+ T-cell responses to Influenza A virus in healthy individuals focus on matrix 1 and nucleoprotein[J].Journal of Virology, 2014, 88(20):11760-11773. [45] HAGHIGHI H R, READ L R, HAERYFAR S M, et al.Identification of a dual-specific T cell epitope of the hemagglutinin antigen of an H5 Avian influenza virus in chickens[J].PLoS One, 2009, 4(11):e7772. [46] REEMERS S S, VAN HAARLEM D A, SIJTS A J, et al.Identification of novel Avian influenza virus derived CD8+ T-cell epitopes[J].PLoS One, 2012, 7(2):e31953. [47] HOU Y, GUO Y, WU C, et al.Prediction and identification of T cell epitopes in the H5N1 Influenza virus nucleoprotein in chicken[J].PLoS One, 2012, 7(6):e39344. [48] ZHANG W, HUANG Q, LU M, et al.Exploration of the BF2*15 major histocompatibility complex class Ⅰ binding motif and identification of cytotoxic T lymphocyte epitopes from the H5N1 Influenza virus nucleoprotein in chickens[J].Archives of Virology, 2016, 161(11):3081-3093. [49] MILLER M M, TAYLOR R J.Brief review of the chicken major histocompatibility complex:The genes, their distribution on chromosome 16, and their contributions to disease resistance[J].Poultry Science, 2016, 95(2):375-392. [50] SILVA A, GALLARDO R A.The chicken MHC:Insights into genetic resistance, immunity, and inflammation following Infectious bronchitis virus infections[J].Vaccines, 2020, 8(4):637. [51] LIM H X, LIM J, JAZAYERI S D, et al.Development of multi-epitope peptide-based vaccines against SARS-CoV-2[J].Biomedical Journal, 2021, 44(1):18-30. [52] TREGASKES C A, HARRISON M, SOWA A K, et al.Surface expression, peptide repertoire, and thermostability of chicken class Ⅰ molecules correlate with peptide transporter specificity[J].Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(3):692-697. [53] KIM T, HUNT H D, PARCELLS M S, et al.Two class Ⅰ genes of the chicken MHC have different functions:BF1 is recognized by NK cells while BF2 is recognized by CTLs[J].Immunogenetics, 2018, 70(9):599-611. [54] COLLISSON E, GRIGGS L, DRECHSLER Y.Macrophages from disease resistant B2 haplotype chickens activate T lymphocytes more effectively than macrophages from disease susceptible B19 birds[J].Developmental and Comparative Immunology, 2017, 67:249-256. [55] BACON L D, WITTER R L, CRITTENDEN L B, et al.B-haplotype influence on Marek's disease, rous sarcoma, and Lymphoid leukosis virus-induced tumors in chickens[J].Poultry Science, 1981, 60(6):1132-1139. [56] SILVA A, HAUCK R, KERN C, et al.Effects of chicken MHC haplotype on resistance to distantly related Infectious bronchitis viruses[J].Avian Diseases, 2019, 63(2):310-317. [57] BACON L D, WITTER R L.Influence of B-haplotype on the relative efficacy of Marek's disease vaccines of different serotypes[J].Avian Diseases, 1993, 37(1):53-59. [58] HUNT H D, JADHAO S, SWAYNE D E.Major histocompatibility complex and background genes in chickens influence susceptibility to high pathogenicity Avian influenza virus[J].Avian Diseases, 2010, 54(1 Suppl):572-575. [59] DUNNINGTON E A, LARSEN C T, GROSS W B, et al.Antibody responses to combinations of antigens in White Leghorn chickens of different background genomes and major histocompatibility complex genotypes[J].Poultry Science, 1992, 71(11):1801-1806. [60] OWEN J P, DELANY M E, CARDONA C J, et al.Host inflammatory response governs fitness in an avian ectoparasite, the Northern fowl mite (Ornithonyssus sylviarum)[J].International Journal for Parasitology, 2009, 39(7):789-799. [61] CARON L A, ABPLANALP H, TAYLOR R J.Resistance, susceptibility, and immunity to Eimeria tenella in major histocompatibility (B) complex congenic lines[J].Poultry Science, 1997, 76(5):677-682. [62] JOINER K S, HOERR F J, van SANTEN E, et al.The avian major histocompatibility complex influences bacterial skeletal disease in broiler breeder chickens[J].Veterinary Pathology, 2005, 42(3):275-281. [63] COTTER P F, TAYLOR R J, ABPLANALP H.B-complex associated immunity to Salmonella Enteritidis challenge in congenic chickens[J].Poultry Science, 1998, 77(12):1846-1851. [64] QIN Y, TU K, TENG Q, et al.Identification of novel T-cell epitopes on Infectious bronchitis virus N protein and development of a multi-epitope vaccine[J].Journal of Virology, 2021, 95(17):e66721. [65] YANG T, WANG H N, WANG X, et al.The protective immune response against Infectious bronchitis virus induced by multi-epitope based peptide vaccines[J].Bioscience Biotechnology and Biochemistry, 2009, 73(7):1500-1504. |
[1] | LI Jun, YIN Lei, YANG Ying, HU Jianxin, TANG Li, QIN Qingming, LIANG Chengcheng, WU Haigang, ZHAO Mengting, DUAN Wenmiao. Effects of Different Fermentation Bedding Materials on Growth Performance, Digestive Enzyme Activities, Serum Biochemical and Immune Indices in Patridge Shank Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3047-3058. |
[2] | CHEN Wanhong, ZHANG Mengling, YANG Wenpeng, ZHU Peiji, JIA Daihan, ZHAO Minmeng, ZHANG Jun, LI Jun, GONG Daoqing. Effect of Diets with Different Energy and Protein Levels on the Production Performance of Snowy Mountain Chicken Breeder Hens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3145-3154. |
[3] | TANG Li, DENG Kaiwei, HE Shuhai, LI Jun, QIN Qingming, LIANG Chengcheng, WU Haigang, HAN Xu, LU Jianing. Effects of Green Tea Aqueous Extract on Nutrient Apparent Metabolism Rate,Digestive Enzyme Activities and Serum Biochemical Indices of Cyan-shank Partridge chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2552-2560. |
[4] | MENG Zhaoying, JIN Huan, TU Min, HU Ge, ZHANG Zhenhua. Preparation and Identification of Rabbit Polyclonal Antibody of Chicken Complement Receptor 2 [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2772-2780. |
[5] | XU Kuowei, LENG Tangjian, XIONG Bao, LI Jinyan, GUO Panjiang, WU Peifu, CHEN Fenfen, ZHOU Jielong. Whole-genome Selection Signal Analysis of Ninglang Plateau Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 1941-1954. |
[6] | ZHAO Na, WANG Lizhong, ZHU Lianying, CAI Yumei, LI Shuang, LI Chenghui. Effects of Chestnut Bur Aqueous Extracts on Growth Performance,Organ Coefficient,Antioxidant Function and Tissue Structure in Mice [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2056-2065. |
[7] | HUANG Jing, ZHAO Na, GUO Wanzheng, CHEN Fang, FAN Qiwen, DU Encun, TAO Wenjing, JIN Feng, WEI Jintao. Effects of Fermented Feed Mulberry on Serum Biochemical Indexes,Intestinal Tissue Morphology and Cecal Microflora of Yellow-feathered Chicken [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2088-2100. |
[8] | ZHONG Min, YANG Xiaopei, LIU Ruiping, SONG Wenjing, ZHONG Yunping. Effect of Dietary Andrographis paniculata Extract Supplementation on the Growth Performance,Serum Biochemistries,and Gut Health in Ningdu Yellow Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2115-2127. |
[9] | TIAN Yingping, DU Yun, JIANG Yaozhou, LIU Qinsong, ZHOU Xiaohong, WU Sheng, ZHAO Xudong, ZHANG Fuping. Study on the Growth and Development,Meat Performance and Their Correlation Analysis of Guizhou Recessive White-feather Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2208-2218. |
[10] | ZHANG Zhengfei, TANG Anxing, SUN Jindong, FU Lixiang, WANG Xingxian, ZHANG Shiyun, YANG Liangyu, NIU Guoyi, TAO Linli. Study on the Appropriate Dietary Crude Protein Level of Yanjin Black-bone Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1543-1553. |
[11] | LI Zhiyi, LI Jie, CHEN Chuwen, NONG Yi, WANG Jiayan, WANG Zi, WU Jinbo, LI Zhixiong. Analysis and Identification of miRNA in Leg Muscle Tissue of Tibetan Chicken Embryos at Different Developmental Stages [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1681-1693. |
[12] | YANG Zhuliang, LUO Jintang, ZHANG Zhen, LI Jianneng, LI Fuqiu, YANG Xiurong. Genome-wide Association Study of Comb Traits in Nandan-Yao Chickens Based on the "GXChickChip-I" Chip [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1716-1728. |
[13] | WU Min, XU Junjie, LI Xinxin, CHEN Yifan, WANG Dehe, HAO Erying, CHEN Hui, SHI Lei. Screening of Key Genes Regulating Muscle Development in Yellow-feathered Chickens Based on RNA-Seq [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 990-1000. |
[14] | LI Zhiwei, XIE Xinjie, SHEN Yusong, WANG Hui, XU Ming, ZANG Changjiang, YANG Kailun, LI Fengming. Effects of Different Concentrate Supplementation Levels on Fecal Fermentative Parameters and Microflora Structure of Junggar Bactrian Camels [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1033-1044. |
[15] | WEI Ying, DUAN Yehui, DENG Jinping. Research Progress on the Application of Flavor Amino Acids in Pig and Chicken Production [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1089-1101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||