China Animal Husbandry & Veterinary Medicine ›› 2023, Vol. 50 ›› Issue (3): 1016-1024.doi: 10.16431/j.cnki.1671-7236.2023.03.017
• Nutrition and Feed • Previous Articles Next Articles
CHEN Shaojun1, LI Gang1, NAI Zida1, LIU Di1,2, JIANG Xinpeng1
Received:
2022-08-30
Online:
2023-03-05
Published:
2023-03-02
CLC Number:
CHEN Shaojun, LI Gang, NAI Zida, LIU Di, JIANG Xinpeng. Research and Application of Gene-edited Probiotics in Animal Intestinal Health[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(3): 1016-1024.
[1] THE INTEGRATIVE HMP(iHMP) RESEARCH NETWORK CONSORTIUM.The integrative human microbiome project:Dynamic analysis of microbiome-host omics profiles during periods of human health and disease[J].Cell Host Microbe,2014,16(3):276-289. [2] KAILASAPATHY K,CHIN J.Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp.[J].Immunology and Cell Biology,2000,78(1):80-88. [3] WULLT M,JOHANSSON HAGSLATT M L,ODENHOLT I,et al.Lactobacillus plantarum 299V enhances the concentrations of fecal short-chain fatty acids in patients with recurrent clostridium difficile-associated diarrhea[J].Digestove Diseases and Sciences,2007,52(9):2082-2086. [4] IZUMO T,MAEKAWA T,IDA M,et al.Effect of intranasal administration of Lactobacillus pentosus S-PT84 on Influenza virus infection in mice[J].International Immunopharmacology,2010,10(9):1101-1106. [5] FERNANDEZ-DUARTE K P,OLAYA-GALAN N N,SALAS-CARDENAS S P,et al.Bifidobacterium adolescentis (DSM 20083) and Lactobacillus casei (Lafti L26-DSl):Probiotics able to block the in vitro adherence of Rotavirus in MA104 cells[J].Probiotics Antimicrob Proteins,2018,10(1):56-63. [6] ERMOLENKO E I,FURAEVA V A,ISAKOV V A,et al.Inhibition of Herpes simplex virus type 1 reproduction by probiotic bacteria in vitro[J].Voprosy Virusologii,2010,55(4):25-28. [7] ISABELLA V M,HA B N,CASTILLO M J,et al.Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[J].Nature Biotechnology,2018,36(9):857-864. [8] GANGAIAH D,RYAN V,VAN HOESEL D,et al.Recombinant Limosilactobacillus (Lactobacillus) delivering nanobodies against clostridium perfringens netb and alpha toxin confers potential protection from necrotic enteritis[J].Microbiologyopen,2022,11(2):293-299. [9] HUANG Q,NIU T,ZOU B,et al.Lactobacillus plantarum surface-displayed ASFV (P14.5) can stimulate immune responses in mice[J].Vaccines (Basel),2022,10(3):335-345. [10] ZHUANG Z,WU Z G,CHEN M,et al.Secretion of human interferon-beta 1B by recombinant Lactococcus lactis[J].Biotechnology Letters,2008,30(10):1819-1823. [11] YIN S,ZHU H,SHEN M,et al.Surface display of heterologous beta-galactosidase in food-grade recombinant Lactococcus lactis[J].Current Microbiology,2018,75(10):1362-1371. [12] KANG S,LIN Z,XU Y,et al.A recombinant bifidobacterium bifidum BGN4 strain expressing the streptococcal superoxide dismutase gene ameliorates inflammatory bowel disease[J].Microbial Cell Factories,2022,21(1):113-124. [13] LE LINH H,THU N P A,DUNG T T X,et al.Yeast cell surface displaying VP28 antigen and its potential application for shrimp farming[J].Applied Microbiology Biotechnology,2021,105(16-17):6345-6354. [14] ZHOU H,GAO Y,GAO G,et al.Oral administration of recombinant Lactococcus lactis expressing the cellulase gene increases digestibility of fiber in geese[J].Current Microbiology,2015,71(6):693-698. [15] NIU H,XING J H,ZOU B S,et al.Immune evaluation of recombinant Lactobacillus plantarum with surface display of ha1-dcpep in mice[J].Frontiers in Immunology,2021,12:800965-800980. [16] PAN N,LIU B,BAO X,et al.Oral delivery of novel recombinant Lactobacillus elicit high protection against Staphylococcus aureus pulmonary and skin infections[J].Vaccines (Basel),2021,9(9):984-998. [17] HOU X L,YU L Y,LIU J,et al.Surface-displayed Porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria[J].Vaccine,2007,26(1):24-31. [18] MA S,WANG L,HUANG X,et al.Oral recombinant Lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of Porcine epidemic diarrhea virus[J].Microbial Cell Factories,2018,17(1):20-32. [19] INATOMI T,AMATATSU M,ROMERO-PEREZ G A,et al.Dietary probiotic compound improves reproductive performance of Porcine epidemic diarrhea virus-infected sows reared in a Japanese commercial swine farm under vaccine control condition[J].Frontiers in Immunology,2017,8:1877-1885. [20] JIANG X,HOU X,TANG L,et al.A phase trial of the oral Lactobacillus casei vaccine polarizes TH2 cell immunity against Transmissible gastroenteritis coronavirus infection[J].Applied Microbiology Biotechnology,2016,100(17):7457-7469. [21] HOU X,JIANG X,JIANG Y,et al.Oral immunization against PEDV with recombinant Lactobacillus casei expressing dendritic cell-targeting peptide fusing coe protein of PEDV in piglets[J].Viruses,2018,10(3):106-120. [22] LEBEER S,BRON P A,MARCO M L,et al.Identification of probiotic effector molecules:Present state and future perspectives[J].Current Opinion in Biotechnology,2018,49:217-223. [23] GOH Y J,AZCARATE-PERIL M A,O’FLAHERTY S,et al.Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM[J].Applied and Environmental Microbiology,2009,75(10):3093-3105. [24] O’FLAHERTY S J,KLAENHAMMER T R.Functional and phenotypic characterization of a protein from Lactobacillus acidophilus involved in cell morphology,stress tolerance and adherence to intestinal cells[J].Microbiology (Reading),2010,156(Pt 11):3360-3367. [25] JOHNSON B R,KLAENHAMMER T R.ACMB is an S-layer-associated beta-N-acetylglucosaminidase and functional autolysin in Lactobacillus acidophilus NCFM[J].Applied and Environmental Microbiology,2016,82(18):5687-5697. [26] HYMES J P,JOHNSON B R,BARRANGOU R,et al.Functional analysis of an S-layer-associated fibronectin-binding protein in Lactobacillus acidophilus NCFM[J].Applied and Environmental Microbiology,2016,82(9):2676-2685. [27] JOHNSON B,SELLE K,O’FLAHERTY S,et al.Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM[J].Microbiology (Reading),2013,159(Pt 11):2269-2282. [28] GOH Y J,KLAENHAMMER T R.Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM[J].Applied and Environmental Microbiology,2010,76(15):5005-5012. [29] OH J H,VAN PIJKEREN J P.CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri[J].Nucleic Acids Research,2014,42(17):e131-e142. [30] OH J H,ALEXANDER L M,PAN M,et al.Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri[J].Cell Host and Microbe,2019,25(2):273-284. [31] ZENG Z,ZUO F,MARCOTTE H.Putative adhesion factors in vaginal Lactobacillus gasseri DSM14869:Functional characterization[J].Applied and Environmental Microbiology,2019,85(19):00800-00819. [32] REMUS D M,BONGERS R S,MEIJERINK M,et al.Impact of Lactobacillus plantarum sortase on target protein sorting,gastrointestinal persistence,and host immune response modulation[J].Journal of Bacteriology,2013,195(3):502-509. [33] KANESAKI Y,MASUTANI H,SAKANAKA M,et al.Complete genome sequence of Bifidobacterium longum 105-A,a strain with high transformation efficiency[J].Genome Announcements,2014,2(6):1311-1314. [34] O’CALLAGHAN A,VAN SINDEREN D.Bifidobacteria and their role as members of the human gut microbiota[J].Frontiers in Microbiology,2016,7:925-948. [35] SAKANAKA M,HANSEN M E,GOTOH A,et al.Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis[J].Science Advances,2019,5(8):eaaw7696-7702. [36] YAMADA C,GOTOH A,SAKANAKA M,et al.Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum[J].Cell Chemical Biology,2017,24(4):515-524. [37] PLAVEC T V,BERLEC A.Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides[J].Applied Microbiology and Biotechnology,2019,103(5):2053-2066. [38] BROEKAERT I J,WALKER W A.Probiotics as flourishing benefactors for the human body[J].Gastroenterol Nursing,2006,29(1):26-34. [39] ABRIOUEL H,HERRMANN A,STARKE J,et al.Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ1228[J].Applied and Environmental Microbiology,2004,70(1):603-606. [40] HIDALGO-CANTABRANA C,SANCHEZ B,ALVAREZ-MARTIN P,et al.A single mutation in the gene responsible for the mucoid phenotype of bifidobacterium animalis sub sp.Lactis confers surface and functional characteristics[J].Applied and Environmental Microbiology,2015,81(23):7960-7968. [41] VAUGHAN E E,VAN DEN BOGAARD P T,CATZEDDU P,et al.Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus[J].Journal of Bacteriology,2001,183(4):1184-1194. [42] HOLS P,FERAIN T,GARMYN D,et al.Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression[J].Applied and Environmental Microbiology,1994,60(5):1401-1413. [43] GASPAR P,CARVALHO A L,VINGA S,et al.From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria[J].Biotechnology Advances,2013,31(6):764-788. [44] KYLA-NIKKILA K,HUJANEN M,LEISOLA M,et al.Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure l-(+)-lactic acid[J].Applied and Environmental Microbiology,2000,66(9):3835-3841. [45] ZUO F L,CHEN S W,MARCOTTE H.Engineer probiotic bifidobacteria for food and biomedical applications-current status and future prospective[J].Biotechnology Advances,2020,45:107654. [46] MOUGIAKOS I,BOSMA E F,WEENINK K,et al.Efficient genome editing of a facultative thermophile using mesophilic spCas9[J].ACS Synthetic Biology,2017,6(5):849-861. [47] GUO T,XIN Y,ZHANG Y,et al.A rapid and versatile tool for genomic engineering in Lactococcus lactis[J].Microbial Cell Factories,2019,18(1):22-34. [48] VAN DER ELS S,JAMES J K,KLEEREBEZEM M,et al.Versatile Cas9-driven subpopulation selection toolbox for Lactococcus lactis[J].Applied and Environmental Microbiology,2018,84(8):2752-2778. [49] HIDALGO-CANTABRANA C,GOH Y J,PAN M,et al.Genome editing using the endogenous type Ⅰ CRISPR-Cas system in Lactobacillus crispatus[J].Proceeding of the National Academy of Science of the United States of America,2019,116(32):15774-15783. [50] HUANG H,SONG X,YANG S.Development of a RecE/T-assisted CRISPR-Cas9 toolbox for Lactobacillus[J].Biotechnology Journal,2019,14(7):e1800690-1800702. [51] LEENAY R T,VENTO J M,SHAH M,et al.Genome editing with CRISPR-Cas9 in Lactobacillus plantarum revealed that editing outcomes can vary across strains and between methods[J].Biotechnology Journal,2019,14(3):1700583-1700608. [52] JIANG Y,QIAN F,YANG J,et al.CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum[J].Nature Communications,2017,8:15179-15190. [53] SONG X,HUANG H,XIONG Z,et al.CRISPR-Cas9(D10A) nickase-assisted genome editing in Lactobacillus casei[J].Applied and Environmental Microbiology,2017,83(22):e01259-e01272. [54] ZHANG J,ZONG W,HONG W,et al.Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production[J].Metabolic Engineering,2018,47:49-59. [55] 周秀清.丁酸梭菌CRISPR-Cas基因编辑工具的建立及应用[D].北京:中国农业科学院,2021. ZHOU X Q.Establishment and application of CRISPR-Cas based gene editing tools in Clostridium butyricum[D].Beijing:Chinese Academy of Agricultural Sciences,2021.(in Chinese) [56] O’CONNELL M M,O’DRISCOLL J,FITZGERALD G F,et al.Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003[J].Microbial Biotechnology,2009,2(3):321-332. [57] HIRAYAMA Y,SAKANAKA M,FUKUMA H,et al.Development of a double-crossover markerless gene deletion system in Bifidobacterium longum:Functional analysis of the alpha-galactosidase gene for raffinose assimilation[J].Applied and Environmental Microbiology,2012,78(14):4984-4994. [58] SAKAGUCHI K,HE J,TANI S,et al.A targeted gene knockout method using a newly constructed temperature-sensitive plasmid mediated homologous recombination in bifidobacterium longum[J].Applied Microbiology and Biotechnology,2012,95(2):499-509. [59] BISWAS I,GRUSS A,EHRLICH S D,et al.High-efficiency gene inactivation and replacement system for gram-positive bacteria[J].Journal Bacteriology,1993,175(11):3628-3635. [60] VAN PIJKEREN J P,BRITTON R A.High efficiency recombineering in lactic acid bacteria[J].Nucleic Acids Research,2012,40(10):e76. [61] YANG P,WANG J,QI Q.Prophage recombinases-mediated genome engineering in Lactobacillus plantarum[J].Microbial Cell Factories,2015,14:154-165. [62] XIN Y,GUO T,MU Y,et al.Identification and functional analysis of potential prophage-derived recombinases for genome editing in Lactobacillus casei[J].FEMS Microbiology Letters,2017,364(24):243-252. [63] SAKAGUCHI K,FUNAOKA N,TANI S,et al.The PYRE gene as a bidirectional selection marker in Bifidobacterium longum 105-A[J].Bioscience of Microbiota Food and Health,2013,32(2):59-68. [64] ROBERTS A,BARRANGOU R.Applications of CRISPR-Cas systems in lactic acid bacteria[J].FEMS Microbiology Reviews,2020,44(5):523-537. [65] PAN M,NETHERY M A,HIDALGO-CANTABRANA C,et al.Comprehensive mining and characterization of CRISPR-Cas systems in Bifidobacterium[J].Microorganisms,2020,8(5):720-738. [66] QIN Z,YANG Y,YU S,et al.Repurposing the endogenous type i-e CRISPR/Cas system for gene repression in gluconobacter oxydans wsh-003[J].ACS Synthetic Biology,2021,10(1):84-93 [67] VENTO J M,CROOK N,BEISEL C L.Barriers to genome editing with CRISPR in bacteria[J].Journal of Industrial Microbiology & Biotechnology,2019,46(9-10):1327-1341. [68] ZUO F,ZENG Z,HAMMARSTROM L,et al.Inducible plasmid self-destruction (IPSD) assisted genome engineering in Lactobacilli and Bifidobacteria[J].ACS Synthetic Biology,2019,8(8):1723-1729. [69] WANG C,CUI Y,QU X.Optimization of electrotransformation (ETF) conditions in lactic acid bacteria (lab)[J].Journal of Microbiological Methods,2020,174:105944-105957. [70] PARK M J,PARK M S,JI G E.Improvement of electroporation-mediated transformation efficiency for a Bifidobacterium strain to a reproducibly high level[J].Journal of Microbiological Methods,2019,159:112-119. [71] WELKER D L,CROWLEY B L,EVANS J B,et al.Transformation of Lactiplantibacillus plantarum and Apilactobacillus kunkeei is influenced by recipient cell growth temperature,vector replicon,and DNA methylation[J].Journal of Microbiological Methods,2020,175:105967-106012. [72] YASUI K,KANO Y,TANAKA K,et al.Improvement of bacterial transformation efficiency using plasmid artificial modification[J].Nucleic Acids Research,2009,37(1):3-10. [73] BOTTACINI F,MORRISSEY R,ROBERTS R J,et al.Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal bifidobacterium breve[J].Nucleic Acids Research,2018,46(4):1860-1877. [74] DONG H,ZHANG Y,DAI Z,et al.Engineering clostridium strain to accept unmethylated DNA[J].PLoS One,2010,5(2):e9038. |
[1] | CAI Yucheng, WU Guanyuan, YANG Haidong, FANG Yinuo, CHEN Zhisheng, ZHAN Xiaoshu. Mechanisms and Current Applications of Probiotics in Animal Health Management [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2101-2114. |
[2] | BIAN Zhiyao, LIU Guohua, HAN Shuaijuan, CHEN Zhimin, ZHENG Aijuan. Effect of Dietary Probiotics Supplementation on Growth Performance, Slaughter Performance,Immune Organ Index and Apparent Metabolic Rate of Nutrients in Broilers [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2140-2148. |
[3] | SUN Jintao, GU Xinshu, WANG Jinquan, WANG Xiumin, TAO Hui, WANG Zhenlong, HAN Bing. Mechanisms and Recent Advances of Lactic Acid Bacteria in Treating Intestinal Inflammation in Companion Animals [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2442-2448. |
[4] | LU Rui, SHENG Hui, GUO Yanyan, ZHANG Yuxin, YAO Dawei, GUO Xiaofei, RUAN Weibin, ZHANG Xiaosheng. Research Progress on Immune Stress of LPS [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 946-958. |
[5] | WAN Baoxia, MENG Lingying, SUN Siyu, ZHAO Yujie, WANG Jiaqi, WANG Qiuju. Analysis of Drug Resistance Genes and Biological Characterization of Goose Derived Bacillus and Lactic Acid Bacteria [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 351-363. |
[6] | TANG Jun, HE Li, WANG Penghui, HE Xiaolong, YI Huanming, CHENG Xiao, REN Chunhuan, CHEN Jiahong, WANG Qiangjun, ZHANG Zijun. Research Progress on the Role of Intestinal Microbes in Healthy Production of Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1466-1479. |
[7] | JI Xinpeng, JIN Shiyu, TENG Hailong, ZHOU Yuze, LI Xiangzi, GAO Xu, LI Qiang. Research Progress on the Application of Mesenchymal Stem Cells in Animal Husbandry [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 955-966. |
[8] | WEI Haibo, LIU Yingchun, SUN Shuguang, LIU Xiwu, ZHU Guihua, DAI Zhenghao, LIU Zongzheng, WEN Fengyun. Effects of Dietary Probiotics and Acid Preparations on Growth Performance and Intestinal Flora of Weaned Piglets [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(12): 5302-5316. |
[9] | ZHANG Hong, TIAN Qiufeng, ZOU Yue, YIN Junyi, BAI Changsheng, HUANG Yuxiang, WANG Zhiqiang, MA Zhigang, HUO Mingdong, DONGJiaqiang, YANG Haotian, YANG Kun, MIAO Yan, CHEN Zhifeng. Isolation,Identification and Probiotic Characteristics of Streptococcus alactolyticus from Intestinal Tract of Zi Geese [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(10): 4578-4586. |
[10] | LI Yuanyuan, MAO Yan, LIANG Zengenni, YANG Chenglin, WU Jing, YUAN Zhihang, YUAN Liyun. Research Progress on the Pharmacological Effects of Viola yedoensis Makino [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(7): 2998-3006. |
[11] | JIANG Shanyi, ZHOU Bijun, WEN Ming, WANG Kaigong. Prevention of Traditional Chinese Medicine with Probiotics on Eimeria tenella [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(5): 2092-2102. |
[12] | GUO Hongwei, CAI Yongchao, FAN Chunguang, HAO Kaixuan, CHANG Juan, WANG Ping, LIU Chaoqi, YIN Qingqiang. Effect of Compound Biological Detoxifier on Aflatoxin B1 Degradation Rate Under Artificial Gastrointestinal Fluid Condition [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(4): 1395-1403. |
[13] | WANG Wei, LI Chunzhu, WANG Shasha, SANG Rui, GE Bingjie, LI Chunting, ZHAO Xin, LIU Xinman, YU Minghong, ZHANG Xuemei. Study on the Protective Mechanism of Traditional Chinese Medicine Combined with Probiotics on Diarrhea Caused by E.coli in Mice [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(2): 779-788. |
[14] | YUAN Shihao, ZHANG Hailin, JU Ning, WANG Xinle, ZHAO Haiyuan, SHAO Yilan, LI Jiaxuan, JIANG Yanping, CUI Wen, TANG Lijie, LI Yijing, WANG Xiaona. Comparison of the Effect of Different Constitutive Promoters on Exogenous Gene Expression in Lactobacillus Expression System [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(11): 4370-4380. |
[15] | GAO Jiahao, QIAO Yanjie, LIAN Kexun, WANG Mengmeng, GU Xinli, SHAO Yongbin. Effects of Glycyrrhizic Acid on Immune Performance of Lipopolysaccharide-stressed Yellow Feather Broilers [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(9): 3419-3427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||