China Animal Husbandry & Veterinary Medicine ›› 2022, Vol. 49 ›› Issue (6): 2270-2278.doi: 10.16431/j.cnki.1671-7236.2022.06.027
• Genetics and Breeding • Previous Articles Next Articles
SHAO Yandi1, JIANG Qiufei2, FENG Yuan2, WANG Yu2, ZHANG Juan1, ZHOU Zihang1, WANG Weizhen1, YU Baojun1, FENG Xiaofang1, CHEN Yafei1, GU Yaling1
Received:
2022-02-08
Online:
2022-06-05
Published:
2022-05-27
CLC Number:
SHAO Yandi, JIANG Qiufei, FENG Yuan, WANG Yu, ZHANG Juan, ZHOU Zihang, WANG Weizhen, YU Baojun, FENG Xiaofang, CHEN Yafei, GU Yaling. Research Progress on Candidate Genes of Cattle Reproductive Traits[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(6): 2270-2278.
[1] 梁春年, 阎萍, 郭宪, 等.牛繁殖性状候选基因的研究进展[J].中国畜牧兽医, 2011, 38(8):103-106. LIANG C N, YAN P, GUO X.et al.Recent progress of propagation traits candidate genes in cattle[J].China Animal Husbandry & Veterinary Medicine, 2011, 38(8):103-106.(in Chinese) [2] EALY A D, WOOLDRIDGE L K, MCCOSKI S R.Board invited review:Post-transfer consequences of in vitro-produced embryos in cattle[J].Journal of Animal Science, 2019, 97(6):2555-2568. [3] BHAKAT M, MOHANTY T, KRAINA V S, et al.Effect of age and season on semen quality parameters in Sahiwal bulls[J].Tropical Animal Health and Production, 2011, 43(6):1161-1168. [4] MENON K M, MUNSHI U M, CLOUSER C L, et al.Regulation of luteinizing hormone/human chorionic gonadotropin receptor expression:A perspective[J].Biology of Reproduction, 2004, 70(4):861-866. [5] 马富龙, 褚敏, 常永芳, 等.LHR、PRLR基因在不同发育阶段牦牛睾丸中的表达与定位[J].农业生物技术学报, 2020, 28(4):672-680. MA F L, CHU M, CHANG Y F, et al.Expression and localization of LHR and PHLR genes in testicles of yark (Bos grunniens) at different developmental stages[J].Chinese Journal of Agricultural Biotechnology, 2020, 28(4):672-680.(in Chinese) [6] 杜青之.GnRH、LHR和PRL基因多态性及其与荷斯坦牛精液品质的关联研究[D].武汉:华中农业大学, 2011. DU Q Z.Study on genetic polymorphism of GnRH, LHR and PRL genes and their relationship with semen quality in Chinese Holstein bulls[D].Wuhan:Huazhong Agricultural University, 2011.(in Chinese) [7] 孙丽萍, 杜青之, 宋亚攀, 等.GnRH和LHR基因多态性和牛精液品质性状的相关分析[J].中国奶牛, 2011, 22:5-8. SUN L P, DU Q Z, SONG Y P, et al.Polymorphisms in GnRH and LHR genes and their effects on bulls sperm quality traits[J].China Dairy Cattle, 2011, 22:5-8.(in Chinese) [8] SUN L P, DU Q Z, SONG Y P, et al.Polymorphisms in luteinizing hormone receptor and hypothalamic gonadotropin-releasing hormone genes and their effects on sperm quality traits in Chinese Holstein bulls[J].Molecular Biology Reports, 2012, 39(6):7117-7123. [9] SIRONEN A, KOTAJA N, MULHERN H, et al.Loss of SPEF2 function in mice results in spermatogenesis defects and primary ciliary dyskinesia[J].Biology of Reproduction, 2011, 85(4):690-701. [10] 郭芳, 罗国静, 鞠志花, 等.SPEF2基因可变剪切体和功能性SNP鉴定及其与公牛精液性状的相关性研究[J].南京农业大学学报, 2014, 37(3):119-125. GUO F, LUO G J, JU Z H, et al.Association of SPEF2 gene splices variant and functional SNP with semen quality traits in Chinese Holstein bulls[J].Journal of Nanjing Agricultural University, 2014, 37(3):119-125.(in Chinese) [11] GUO F, YANG B, JU Z H, et al.Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls[J].Reproduction, 2014, 147(2):241-252. [12] SWEETT H, FONSECA PAS, SUAREZ-VEGA A, et al.Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle[J].Scitific Reports, 2020, 10(1):20102. [13] EPIFANO O, DEAN J.Genetic control of early folliculogenesis in mice[J].Trends in Endocrinology and Metabolism, 2002, 13(4):169-173. [14] 曹静, 陈耀星, 王子旭, 等.促性腺激素释放激素的研究进展[J].中国畜牧兽医, 2007, 5:48-51. CAO J, CHEN Y X, WANG Z X, et al.Progress on gonadotropin-releasing hormone[J].China Animal Husbandry & Veterinary Medicine, 2007, 5:48-51.(in Chinese) [15] DURLINGER A L, KRAMER P, KARELS B, et al.Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary[J].Endocrinology, 1999, 140(12):5789-5796. [16] LIU M N, ZHANG K, XU T M.The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency[J].Human Fertility, 2021, 24(5):325-332. [17] DUBE J L, WANG P, ELVIN J, et al.The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes[J].Molecular Endocrinology, 1998, 12(12):1809-1817. [18] MCGRATH S A, ESQUELA A F, LEE S J.Oocyte-specific expression of growth/differentiation factor-9[J].Molecular Endocrinology, 1995, 9(1):131-136. [19] 丰培金, 牛淑玲, 周虚.卵泡刺激素受体研究进展[J].生殖医学杂志, 2003, 5:311-316. FENG P J, NIU S L, ZHOU X.Advances on the follicle-stimulating hormone receptor[J].Journal of Reproductive Medicine, 2003, 5:311-316.(in Chinese) [20] CICCONE N A, KAISER U B.The biology of gonadotroph regulation[J].Current Opinion in Endocrinology, Diabetes and Obesity, 2009, 16(4):321-327. [21] GHARIB S D, WIERMAN M E, SHUPNIK M A, et al.Molecular biology of the pituitary gonadotropins[J].Endocrine Reviews, 1990, 11(1):177-199. [22] CHU L, LI J, LIU Y, et al.Targeted gene disruption in zebrafish reveals noncanonical functions of LH signaling in reproduction[J].Molecular Endocrinology, 2014, 28(11):1785-1795. [23] DA S J, FERREIRA R M, MATURANA F M, et al.Use of FSH in two different regimens for ovarian superstimulation prior to ovum pick up and in vitro embryo production in Holstein cows[J].Theriogenology, 2017, 90:65-73. [24] ZHANG H, YANG Y, MA W, et al.The revascularization and follicular survival of mouse ovarian grafts treated with FSH during cryopreservation by vitrification[J].CryoLetters, 2016, 37(2):88-102. [25] XIAO X, ZI X D, NIU H R, et al.Effect of addition of FSH, LH and proteasome inhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grunniens) oocytes[J].Reproductive Biology and Endocrinology, 2014, 12:30. [26] 朱芳贤, 赵俊金, 陆灵勇, 等.FSH剂量及应激对文山牛超数排卵效果的影响[J].中国畜牧业, 2020, 20:43-44. ZHU F X, ZHAO J J, LU L Y, et al.Effects of FSH and dosage and stress on superovulation in Wenshan cattle[J].China Animal Industry, 2020, 20:43-44.(in Chinese) [27] BEHRENDT D, BURGER D, GREMMES S, et al.Active immunisation against GnRH as treatment for unilateral granulosa theca cell tumour in mares[J].Equine Veterinary Journal, 2021, 53(4):740-745. [28] LIU T C, CHIANG C F, HO C T, et al.Effect of GnRH on ovulatory response after luteolysis induced by two low doses of PGF2α in lactating dairy cows[J].Theriogenology, 2018, 105:45-50. [29] LIU T C, HO C T, LI K P, et al.Human chorionic gonadotropin (hCG)-induced ovulation occurs later but with equal occurrence in lactating dairy cows:Comparing hCG and gonadotropin-releasing hormone protocols[J].The Journal of Reproduction and Development, 2019, 5(6):507-514. [30] BITTAR J H, PINEDO P J, RISCO C A, et al.Inducing ovulation early postpartum influences uterine health and fertility in dairy cows[J].Journal of Dairy Science, 2014, 97(6):3558-3569. [31] RIBEIRO E S, BISINOTTO R S, LIMA F S, et al.Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility[J].Journal of Dairy Science, 2014, 97(11):6888-6900. [32] DURLINGER A L, KRAMER P, KARELS B, et al.Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary[J].Endocrinology, 1999, 140(12):5789-5796. [33] WEENEN C, LAVEN J S, VON BERGH A R, et al.Anti-Müllerian hormone expression pattern in the human ovary:Potential implications for initial and cyclic follicle recruitment[J].Molecular Human Reproduction, 2004, 10(2):77-83. [34] 李树静, 冯春涛, 胡智辉, 等.供体牛外周血AMH浓度对荷斯坦青年奶牛体内胚胎生产效率的影响[J].畜牧兽医学报, 2021, 52(6):1594-1602. LI S J, FENG C T, HU Z H, et al.The effect of peripheral blood AMH concentration on superovulation and embryo production performance of Holstein young dairy cattle[J].Acta Veterinaria et Zootechnica Sinica, 2021, 52(6):1594-1602.(in Chinese) [35] NAWAZ M Y, JIMENEZ-KRASSEL F, STEIBEL J P, et al.Genomic heritability and genome-wide association analysis of anti-Müllerian hormone in Holstein dairy heifers[J].Journal of Dairy Science, 2018, 101(9):8063-8075. [36] LA MARCA A, SIGHINOLFI G, RADI D, et al.Anti-Müllerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART)[J].Human Reproduction Update, 2010, 16(2):113-130. [37] UMER S, ZHAO S J, SAMMAD A, et al.AMH:Could it be used as a biomarker for fertility and superovulation in domestic animals?[J].Genes, 2019, 10(12):1009. [38] CHEN H, LIU C, JIANG H, et al.Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells[J].Cellular Physiology and Biochemistry, 2017, 41(2):439-450. [39] BELLI M, SHIMASAKI S.Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function[J].Vitamins Hormones, 2018, 107:317-348. [40] HEATH D A, PITMAN J L, MCNATTY K P.Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors[J].Reproduction, 2017, 154(4):521-534. [41] ALAM M H, LEE J, MIYANO T.GDF9 and BMP15 induce development of antrum-like structures by bovine granulosa cells without oocytes[J].The Journal of Reproduction and Development, 2018, 64(5):423-431. [42] 付瑶.BMP15/GDF9通过BMPR2调控牛卵丘细胞增殖与凋亡机制的研究[D].长春:吉林大学, 2018. FU Y.BMP15/GDF9 regulates proliferation and apoptosis of bovine cumulus cells by BMPR2[D].Changchun:Jilin University, 2018.(in Chinese) [43] 王峰, 刘永斌, 田春英, 等.骨形态发生蛋白基因mRNA在牛卵巢组织中的表达研究[J].中国畜牧杂志, 2008, 9:1-5. WANG F, LIU Y B, TIAN C Y, et al.Expression of bone morphogenetic protein gene mRNA in bovine ovarian tissue[J].Chinese Journal of Animal Science, 2008, 9:1-5.(in Chinese) [44] 刘畅.BMP15和GDF9通过miRNA-375-BMPR2调控牛卵丘细胞增殖与凋亡的研究[D].长春:吉林大学, 2018. LIU C.Effects of BMP15 and GDF9 through miRNA-375-BMPR2 pathway on bovine cumulus cells proliferation and apoptosis[D].Changchun:Jilin University, 2018.(in Chinese) [45] 晁哲, 邢漫萍, 黄丽丽, 等.海南黑山羊GDF9和BMP15基因多态性与初胎产羔数间的关系[J].畜牧与兽医, 2021, 53(11):14-20. CHAO Z, XING M P, HUANG L L, et al.Correlation between genetic polymorphisms of the GDF9 and BMP15 genes and the litter size of the first parity of Hainan Black goats[J].Animal Husbandry & Veterinary Medicine, 2021, 53(11):14-20.(in Chinese) [46] 孙庆, 田志龙, 刘秋月, 等.鲁中肉羊BMPR1B、BMP15和GDF9基因多态性与产羔数关联分析[J].中国草食动物科学, 2019, 39(4):1-5. SUN Q, TIAN Z L, LIU Q Y, et al.Polymorphisms of BMPR1B, BMP15 and GDF9 genes and their association with litter size in Luzhong mutton sheep[J].China Herbivore Science, 2019, 39(4):1-5.(in Chinese) [47] SANCHEZ J M, MATHEW D J, PASSARO C, et al.Embryonic maternal interaction in cattle and its relationship with fertility[J].Reproduction in Domestic Animals, 2018, 53(2):20-27. [48] 韩国波.SIRT5对小鼠卵母细胞成熟及早期胚胎发育的影响[D].延吉:延边大学, 2021. HAN G B.Effect of SIRT5 on oocytes maturation and early embryo development in mice[D].Yanji:Yanbian University, 2021.(in Chinese) [49] ETTEGOWDA A, YAO J, SEN A, et al.JY-1, an oocyte-specific gene, regulates granulosa cell function and early embryonic development in cattle[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(45):17602-17607. [50] LEE K B, WEE G, ZHANG K, et al.Functional role of the bovine oocyte-specific protein JY-1 in meiotic maturation, cumulus expansion, and subsequent embryonic development[J].Biology of Reproduction, 2014, 90(3):69. [51] DE CAMARGO G M, COSTA R B, DE ALBUQUERQUE L G, et al.Association between JY-1 gene polymorphisms and reproductive traits in beef cattle[J].Gene, 2014, 533(2):477-480. [52] DE CAMARGO G M, BALDI F, REGITANO L C, et al.Characterization of the exonic regions of the JY-1 gene in Zebu cattle and buffaloes[J].Reproduction in Domestic Animals, 2013, 48(6):918-922. [53] 蒋明.MCRS1、CDX2和NANOG在体外受精和核移植牛囊胚内细胞团及滋养层细胞中的表达[D].杨凌:西北农林科技大学, 2019. JIANG M.Expression of MCRS1, CDX2, NANOG in endothelial cells and trophoblast cells of bovine blastocyst after in vitro fertilization and nuclear transfer[D].Yangling:Northwest A&F University, 2019.(in Chinese) [54] JEDRUSIK A, COX A, WICHER KB, et al.Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition[J].Developmental Biology, 2015, 398(2):147-52. [55] 刘欣.cdx2基因对牛早期胚胎发育及相关基因表达的影响[D].呼和浩特:内蒙古大学, 2013. LIU X.Effect of cdx2 on bovine pre-implantation embryonic development and lineage genes expression[D].Hohhot:Inner Mongolia University, 2013.(in Chinese) [56] SCHIFFMACHER A T, KEEFER C L.CDX2 regulates multiple trophoblast genes in bovine trophectoderm CT-1 cells[J].Molecular Reproduction and Development.2013, 80(10):826-839. [57] SAKURAI N, TAKAHASHI K, EMURA N, et al.The necessity of OCT-4 and CDX2 for early development and gene expression involved in differentiation of inner cell mass and trophectoderm lineages in bovine embryos[J].Cellular Reprogramming, 2016, 18(5):309-318. [58] YAN X, BAXTER R C, FIRTH S M.Involvement of pregnancy-associated plasma protein-A2 in insulin-like growth factor (IGF) binding protein-5 proteolysis during pregnancy:A potential mechanism for increasing IGF bioavailability[J].The Journal of Clinical Endocrinology and Metabolism, 2010, 95(3):1412-1420. [59] SCHNABEL R D, SONSTEGARD T S, TAYLOR J F, et al.Whole-genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families[J].Animal Genetics, 2005, 36(5):408-416. [60] WICKRAMASINGHE S, RINCON G, MEDRANO J F.Variants in the pregnancy-associated plasma protein-A2 gene on Bos taurus autosome 16 are associated with daughter calving ease and productive life in Holstein cattle[J].Journal of Dairy Science, 2011, 94(3):1552-1558. [61] DE VRIES A, RISCO C A.Trends and seasonality of reproductive performance in Florida and Georgia dairy herds from 1976 to 2002[J].Journal of Dairy Science, 2005, 88(9):3155-3165. [62] REFSDAL A O.Reproductive performance of Norwegian cattle from 1985 to 2005:Trends and seasonality[J].Acta Veterinaria Scandinavica, 2007, 49:5. [63] OGAWA S, SATOH M.Random regression analysis of calving interval of Japanese Black cows[J].Animals, 2021, 11(1):202. [64] PUCKOWSKA P, BOROWSKA A, SZWAOZKOWSKI T, et al.Effects of a novel missense polymorphism within the SIGLEC5 gene on fertility traits in Holstein-Friesian cattle[J].Reproduction in Domestic Animals, 2019, 54(9):1163-1168. [65] 王梦琦, 倪炜, 唐程, 等.CXCR1基因编码区SNPs与荷斯坦牛泌乳性能和繁殖性状关联分析[J].东北农业大学学报, 2017, 48(11):35-42. WANG M Q, NI W, TANG C, et al.Association analysis between polymorphism of CXCR1 gene coding region and milk production and partial reproductive traits in Holstein cattle[J].Journal of Northeast Agricultural University, 2017, 48(11):35-42.(in Chinese) [66] 赵佳强, 周妍, 于倩楠, 等.中国荷斯坦奶牛FoxO1基因多态性及与繁殖性状关系研究[J].东北农业大学学报, 2013, 44(6):54-57. ZHAO J Q, ZHOU Y, YU Q N, et al.Polymorphism of FoxO1 gene and associations with reproduction traits in Holstein cattle of China[J].Journal of Northeast Agricultural University, 2013, 44(6):54-57.(in Chinese) [67] WIELGAT P, MROZ R M, STASIAK-BARMUTA A, et al.Inhaled corticosteroids increase siglec-5/14 expression in sputum cells of COPD patients[J].Advances in Experimental Medicine and Biology, 2015, 839:1-5. [68] 程蕾, 王定发, 刘晓华, 等.ISG15和OAS1在奶牛早期妊娠阶段外周血中的表达规律[J].畜牧兽医学报, 2015, 46(1):77-84. CHENG L, WANG D F, LIU X H, et al.Study on ISG15 and OAS1 transcriptions in peripheral blood of dairy cows during early pregnancy[J].Acta Veterinaria et Zootechnica Sinica, 2015, 46(1):77-84.(in Chinese) [69] JECMINKOVA K, MVLLER U, KYSELOVA J, et al.Association of leptin, Toll-like receptor 4, and chemokine receptor of interleukin 8 C-X-C motif single nucleotide polymorphisms with fertility traits in Czech Fleckvieh cattle[J].Asian-Australas Journal of Animal Sciences, 2018, 31(11):1721-1728. [70] CHIRIBAU C B, CHENG L, CUCORANU I C, et al.FOXO3A regulates peroxiredoxin Ⅲ expression in human cardiac fibroblasts[J].The Journal of Biology Chemistry, 2008, 283(13):8211-8217. [71] RONNEBAUM S M, PATTERSON C.The FoxO family in cardiac function and dysfunction[J].Annual of Review Physiology, 2010, 72:81-94. |
[1] | CHU Hongen, LIU Yuan, FENG Xue, BAI Xue, YANG Mengli, LI Juan, HE Lixia, LIU Shuang, FENG Lan, MA Yun. Cloning,Bioinformatics and Tissue Expression Analysis of Bovine TGFB1 Gene [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2506-2518. |
[2] | WANG Zhongfa, LIU Yanchen, YAN Yan, LI Minjuan, HE Yunan, GUAN Weijun, LIU Wenzhong. Study on Isolation Culture and Biological Characteristics of Pancreatic Mesenchymal Stem Cells in Simmental Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2519-2530. |
[3] | ZHANG Zhihao, LU Ligang, ZHANG Zijing, WANG Xiangnan, MIN Jia, HAN Yiwei, PENG Shengkun, LUAN Manru, LIU Aobing, SHI Qiaoting, WANG Eryao. Study on the Role of miRNA from Uterine Exosomes in Embryo Development and Implantation of Xianan Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2691-2704. |
[4] | MIAO Na, QIAO Jiakun, YANG Hui, HAN Pingping, XU Fangjun, CHE Zhaoxuan, DAI Xiangyu, XU Minghang, LONG Zhiwei, ZHU Mengjin. Genome Wide Association Study of Immune Traits in Duroc×Erhualian F2 Generation Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1455-1467. |
[5] | WANG Panpan, SHARAMATI·Bodai, BAKHET·Bodai, LI Zhenwei, ORALHAZI·Hazikhan. Analysis of Genetic Structure and Maternal Origin of Seven Kazakh Cattle Populations in Xinjiang Based on D-loop Polymorphism [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1166-1179. |
[6] | MA Kailun, LI Xue, ZHANG Xiaoxue, ZHANG Tao, ZHANG Menghua, WANG Dan, XU Lei, HUANG Xixia. Estimation of Genetic Parameters of Milk Urea Nitrogen in Xinjiang Brown Cattle and Chinese Simmental Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1202-1210. |
[7] | ANG Song, LI Hui, SUN Fang, WEI Ziheng, BU Ye, SUI Xinxin, LUO Li, LIU Chundong, WU Wenbin, BAO Xiaoping, XU Shanshan, HOU Jintao. Comparison of Slaughter Performance and Meat Quality Between Holstein and Angus-Holstein F1 Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1211-1221. |
[8] | SHEN Yangyang, AN Zhenjiang, GAO Linna, XIA Shuwen, CHEN Kunlin, DING Qiang, GAO Yundong, XUE Jinguo, ZHONG Jifeng, WANG Huili. Comparative Analysis of Muscle Transcriptome of Xuzhou Cattle with Different Tenderness [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 522-533. |
[9] | ZHONG Ming, GENG Longjun, CUI Lianhua, XU Ziyan, YAN Changguo, FENG Jian, CAI Hongfan, ZHANG Xu. Effects of Curcumin on Growth Performance, Apparent Digestibility of Feed Nutrients and Blood Indexes of Yanbian Yellow Breeding Cattle Under Heat Stress [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 655-667. |
[10] | WANG Zihua, YOU Wei, CHENG Haijian, HU Xin, HU Zhiyong, SONG Enliang, JIANG Fugui. Effects of Oleoresin Capsicum on Serum Biochemical,Immune and Antioxidant Indexes of Fattening Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 698-706. |
[11] | HU Ziping, SU Yanfang, ZONG Wencheng, NIU Naiqi, ZHNAG Longchao, WANG Yuan. Screening of Candidate Genes for Two-end Black Coat Color in Jianhe White Xiang Pigs Based on Transcriptome and Genome Data [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 13-24. |
[12] | LI Chaojie, MENG Meng, LI Bo, JIN Guang, WANG Kun, CHE Leijie, QIAO Xiaochun, ZHANG Yuanqing, NIU Xiaoyan. Analysis of Genetic Diversity and Genetic Differentiations in 3 Local Cattle Populations of Shanxi Province Using Microsatellite Markers [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 226-237. |
[13] | YANG Jiazi, HUANG Yuechuan, ZHANG Hailiang, GAO Zimeng, ZHAO Xuelian, WANG Sijia, LI Bin, WEN Dongxu, YU Ying, WANG Yachun. Population Characteristics and Influencing Factors of Conformation Traits and Milk Production Traits of Holstein Cattle in Tibetan [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 258-267. |
[14] | MA Zhen, YE Zhibing, CUI Fanrong, YAN Xiangmin, WANG Xiao, CHEN Wenzhong, SU Nan, LI Haojie. Comparison of Growth and Slaughtering Performances and Meat Quality Differences of Xinjiang Brown Cattle of Different Generations [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(9): 3878-3891. |
[15] | DU Lanxia, YANG Ruixin, LIU Feifei, GUO Yanli, WEI Liming. Effects of Diets with Different Nutrient Levels on Growth Performance,Nutrient Digestion and Antioxidant Property of Anhei Crossbred Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(8): 3329-3336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||