China Animal Husbandry & Veterinary Medicine ›› 2022, Vol. 49 ›› Issue (2): 624-630.doi: 10.16431/j.cnki.1671-7236.2022.02.024
• Genetics and Breeding • Previous Articles Next Articles
HUANG Xiaogang, HAN Beibei, LI Ju, ZHANG Shouquan
Received:
2021-08-17
Online:
2022-02-05
Published:
2022-01-27
CLC Number:
HUANG Xiaogang, HAN Beibei, LI Ju, ZHANG Shouquan. Advance on the Role of microRNA in Mammalian Gametogenesis[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(2): 624-630.
[1] GRIFFITHS-JONES S, GROCOCK R J, VAN DONGEN S, et al. miRBase: microRNA sequences, targets and gene nomenclature[J]. Nucleic Acids Research, 2006, 34(Database issue): D140-4. [2] ZENG Y, YI R, CULLEN B R. microRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(17): 9779-9784. [3] HUMPHREYS D T, WESTMAN B J, MARTIN D I, et al. microRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(47): 16961-16966. [4] TESFAYE D, GEBREMEDHN S, SALILEW-WONDIM D, et al. microRNAs: Tiny molecules with a significant role in mammalian follicular and oocyte development[J]. Reproduction, 2018, 155(3): R121-R135. [5] SALILEW-WONDIM D, GEBREMEDHN S, HOELKER M, et al. The role of microRNAs in mammalian fertility: From gametogenesis to embryo implantation[J]. International Journal of Molecular Science, 2020, 21(2): 585. [6] LAIHO A, KOTAJA N, GYENESEI A, et al. Transcriptome profiling of the murine testis during the first wave of spermatogenesis[J]. The Public Library of Science One, 2013, 8(4): e61558. [7] KOTAJA N. microRNAs and spermatogenesis[J]. Fertility and Sterility, 2014, 101(6): 1552-1562. [8] GRISWOLD M D. The central role of Sertoli cells in spermatogenesis[J]. Seminars in Cell & Developmental Biology, 1998, 9(4): 411-416. [9] PAPAIOANNOU M D, PITETTI J L, RO S, et al. Sertoli cell Dicer is essential for spermatogenesis in mice[J]. Developmental Biology, 2009, 326(1): 250-259. [10] ZIMMERMANN C, ROMERO Y, WARNEFORS M, et al. Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility[J]. The Public Library of Science One, 2014, 9(9): e107023. [11] RAHBAR S, PASHAIASL M, EZZATI M, et al. microRNA-based regulatory circuit involved in sperm infertility[J]. Andrologia, 2020, 52(1): e13453. [12] MA C, SONG H, YU L, et al. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene[J]. Scientific Reports, 2016, 6(1): 32783. [13] HU P, GUAN K, FENG Y, et al. miR-638 inhibits immature Sertoli cell growth by indirectly inactivating PI3K/AKT pathway via SPAG1 gene[J]. Cell Cycle, 2017, 16(23): 2290-2300. [14] RAN M, WENG B, CAO R, et al. miR-26a inhibits proliferation and promotes apoptosis in porcine immature Sertoli cells by targeting the PAK2 gene[J]. Reproduction in Domestic Animals, 2018, 53(6): 1375-1385. [15] SMORAG L, ZHENG Y, NOLTE J, et al. microRNA signature in various cell types of mouse spermatogenesis: Evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation[J]. Biology of the Cell, 2012, 104(11): 677-692. [16] BOUHALLIER F, ALLIOLI N, LAVIAL F, et al. Role of miR-34c microRNA in the late steps of spermatogenesis[J]. RNA, 2010, 16(4): 720-731. [17] BJORKGREN I, SAASTAMOINEN L, KRUTSKIKH A, et al. Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling[J]. The Public Library of Science One, 2012, 7(6): e38457. [18] SULLIVAN R. Epididymosomes: A heterogeneous population of microvesicles with multiple functions in sperm maturation and storage[J]. Asian Journal of Andrology, 2015, 17(5): 726-729. [19] SHARMA U, SUN F, CONINE C C, et al. Small RNAs are trafficked from the epididymis to developing mammalian sperm[J]. Developmental Cell, 2018, 46(4): 481-494. [20] BELLEANNEE C, CALVO E, CABALLERO J, et al. Epididymosomes convey different repertoires of microRNAs throughout the bovine epididymis[J]. Biology of Reproduction, 2013, 89(2): 30. [21] NIXON B, STANGER S J, MIHALAS B P, et al. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation[J]. Biology of Reproduction, 2015, 93(4): 91. [22] REILLY J N, MCLAUGHLIN E A, STANGER S J, et al. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome[J]. Scientific Reports, 2016, 6: 31794. [23] DAHL K D, CZEKALA N M, HSUEH A J. Estrogen-producing ovarian granulosa cells: Use of the granulosa cell aromatase bioassay (GAB) to monitor FSH levels in body fluids[J]. Advances in Experimental Medicine and Biology, 1987, 219: 275-298. [24] CARABATSOS M J, SELLITTO C, GOODENOUGH D A, et al. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence[J]. Developmental Biology, 2000, 226(2): 167-179. [25] SUGIURA K, PENDOLA F L, EPPIG J J. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: Energy metabolism[J]. Developmental Biology, 2005, 279(1): 20-30. [26] WIGGLESWORTH K, LEE K B, O'BRIEN M J, et al. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): E3723-E3729. [27] LEI L, JIN S, GONZALEZ G, et al. The regulatory role of Dicer in folliculogenesis in mice[J]. Molecular and Cellular Endocrinology, 2010, 315(1-2): 63-73. [28] KANEDA M, TANG F, O'CARROLL D, et al. Essential role for Argonaute2 protein in mouse oogenesis[J]. Epigenetics Chromatin, 2009, 2(1): 9. [29] MUGGENHUMER D, VESELY C, NIMPF S, et al. Drosha protein levels are translationally regulated during xenopus oocyte maturation[J]. Molecular Biology of The Cell, 2014, 25(13): 2094-2104. [30] SONG C, YAO J, CAO C, et al. PPARgamma is regulated by miR-27b-3p negatively and plays an important role in porcine oocyte maturation[J]. Biochemical and Biophysical Research Communications, 2016, 479(2): 224-230. [31] TESFAYE D, WORKU D, RINGS F, et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach[J]. Molecular Reproduction and Development, 2009, 76(7): 665-677. [32] GILCHRIST G C, TSCHERNER A, NALPATHA-MKALAM T, et al. microRNA expression during bovine oocyte maturation and fertilization[J]. International Journal of Molecular Science, 2016, 17(3): 396. [33] GROSSMAN H, HAR-PAZ E, GINDI N, et al. Regulation of GVBD in mouse oocytes by miR-125a-3p and Fyn kinase through modulation of actin filaments[J]. Scientific Reports, 2017, 7(1): 2238. [34] SONG C, YAO J, CAO C, et al. PPARγ is regulated by miR-27b-3p negatively and plays an important role in porcine oocyte maturation[J]. Biochemical and Biophysical Research Communications, 2016, 479(2): 224-230. [35] SINHA P B, TESFAYE D, RINGS F, et al. microRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation[J]. Journal of Ovarian Research, 2017, 10(1): 37. [36] HAN X, XUE R, YUAN H J, et al. microRNA-21 plays a pivotal role in the oocyte-secreted factor-induced suppression of cumulus cell apoptosis[J]. Biology of Reproduction, 2017, 96(6): 1167-1180. [37] LI X, WANG H, SHENG Y, et al. microRNA-224 delays oocyte maturation through targeting Ptx3 in cumulus cells[J]. Mechanisms of Development, 2017, 143: 20-25. [38] XU S, LINHER-MELVILLE K, YANG B B, et al. micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase[J]. Endocrinology, 2011, 152(10): 3941-3951. [39] PAN B, TOMS D, SHEN W, et al. microRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells[J]. American Journal of Physiology-Endocrinology and Metabolism, 2015, 308(6): E525-E534. [40] SUN X F, LI Y P, PAN B, et al. Molecular regulation of miR-378 on the development of mouse follicle and the maturation of oocyte in vivo[J]. Cell Cycle, 2018, 17(18): 2230-2242. [41] PAN B, TOMS D, LI J. microRNA-574 suppresses oocyte maturation via targeting hyaluronan synthase 2 in porcine cumulus cells[J]. American Journal of Physiology-Cell Physiology, 2018, 314(3): C268-C277. [42] CHEN H, LIU C, JIANG H, et al. Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells[J]. Cellular Physiology and Biochemistry, 2017, 41(2): 439-450. [43] ZHANG J, GUAN Y, SHEN C, et al. microRNA-375 regulates oocyte in vitro maturation by targeting ADAMTS1 and PGR in bovine cumulus cells[J]. Biomedicine & Pharmacotherapy, 2019, 118: 109350. [44] ZHANG M, ZHANG Q, HU Y, et al. miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation[J]. Cell Death & Disease, 2017, 8(10): e3088. [45] LI Z M, LI W. miR-383 inhibits proliferation of granulosa cells by down-regulation of cell cycle-related proteins in mice][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2019, 35(6): 518-525. [46] YUAN X, DENG X, ZHOU X, et al. miR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells[J]. In Vitro Cellular and Developmental Biology. Animal, 2018, 54(10): 715-724. [47] LIU J, YAO W, YAO Y, et al. miR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene[J]. FEBS Letters, 2014, 588(23): 4497-4503. [48] LIU J, LI X, YAO Y, et al. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2018, 1861(3): 246-257. [49] MA L, ZHENG Y, TANG X, et al. miR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling[J]. Reproduction, 2019, 158(5): 441-452. [50] GEBREMEDHN S, SALILEW-WONDIM D, HOELKER M, et al. microRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1[J]. Biology of Reproduction, 2016, 94(6): 127. [51] ANDREAS E, HOELKER M, NEUHOFF C, et al. microRNA 17-92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes[J]. Cell and Tissue Research, 2016, 366(1): 219-230. [52] PANDE H O, TESFAYE D, HOELKER M, et al. microRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway[J]. Journal of Ovarian Research, 2018, 11(1): 34. [53] ZHANG Z, CHEN C Z, XU M Q, et al. miR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR[J]. Theriogenology, 2019, 123: 45-53. [54] YAO Y, NIU J, SIZHU S, et al. microRNA-125b regulates apoptosis by targeting bone morphogenetic protein receptor 1B in yak granulosa cells[J]. DNA and Cell Biology, 2018, 37(11): 878-887. [55] LI H, DAI Y, YU J, et al. Comprehensive circRNA/miRNA/mRNA analysis reveals circRNAs protect against toxicity induced by BPA in GC-2 cells[J]. Epigenomics, 2019, 11(8): 935-949. |
[1] | LYU Lingyan, SUN Ruyu, LIN Changhua, ZHANG Shengbin, QIN Xiuzhen, BAI Xiufang, WU Yongshao, CHEN Zhao, LIU Lei, ZHANG Bing, JIANG Jiaxia, ZHANG Jiaqing. Comparative Analysis of miRNA-mRNA Expression Profile in Hypothalamus-Pituitary-Ovary Gonad Axis During Estrus and Anestrus in Gilts [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 2965-2980. |
[2] | ZHANG Zhihao, LU Ligang, ZHANG Zijing, WANG Xiangnan, MIN Jia, HAN Yiwei, PENG Shengkun, LUAN Manru, LIU Aobing, SHI Qiaoting, WANG Eryao. Study on the Role of miRNA from Uterine Exosomes in Embryo Development and Implantation of Xianan Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2691-2704. |
[3] | JIANG Chenxi, CHENG Sufang, WU Guozao, CHEN Juan, GAO Xiaona, GUO Xiaoquan, LIU Ping. Research Progress on the Role of Pulmonary Artery Endothelial Cells in Broiler Ascites Syndrome and the Regulation Mechanism of miRNA [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1522-1532. |
[4] | LI Zhiyi, LI Jie, CHEN Chuwen, NONG Yi, WANG Jiayan, WANG Zi, WU Jinbo, LI Zhixiong. Analysis and Identification of miRNA in Leg Muscle Tissue of Tibetan Chicken Embryos at Different Developmental Stages [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1681-1693. |
[5] | LI Jingxuan, LIN Yanjiao, HUANG Qiongjun, HAN Xinyan, ZHANG Yuelang. Research Progress on Non-coding RNA Related to Skeletal Muscle Development in Goats [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 582-592. |
[6] | WANG Yong, MA Chi, WANG Chao, ZHAO Qinan, SUN Zhipeng, TIAN Feng, WANG Li, JIN Hai, LI Changqing. Research Progress on Molecular Mechanism of miRNA and lncRNA Regulating Follicular Development in Ruminants [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 771-780. |
[7] | XU Haotian, YU Yuetong, LI Jing, MA Zhiyuan, YANG Bin, WANG Zekun, TUO Haixin, QI Meng. Comparative Analysis of miRNA Expression Profiles in Bovine Mammary Epithelial Cells Treated with Lipopolysaccharide and Calcium Ions [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(9): 4066-4079. |
[8] | YAO Weijia, LUO Chunhai, LIU Jiajin, WANG Wei, LI Danyang, LIU Bingqi, FU Shixin. Effect of Overexpression of miRNA-424-5p Targeting AKT3 on Apoptosis of Endometrial Epithelial Cells in Dairy Cows [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(8): 3635-3642. |
[9] | WANG Meijie, LIU Xingwang, BAI Man. Research Progress on the Role of lncRNA in Mammalian Male Reproduction [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(7): 2963-2972. |
[10] | LUO Chunhai, ZHENG Chengyuan, ZHANG Menglong, YAO Weijia, LIU Jiajin, LIU Bingqi, WANG Wei, FU Shixin. Regulation of Vascular Endothelial Growth Factor A Expression by miRNA-185 in Dairy Cows with Retained Fetal Membranes [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 916-925. |
[11] | CHEN Bohe, LIUFU Sui, YU Zonggang, WANG Kaiming, LIU Xiaolin, YI Lei, MA Haiming. Research Progress on the Regulation of Non-coding RNA in Muscle Fiber-type Conversion in Animals [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 1132-1141. |
[12] | LI Ying, GUO Xu, JIANG Qicheng, GU Lihong. Study on the Co-regulation of m6A and miRNA on Skeletal Muscle Development of Peking Ducks in Embryonic Stage [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 470-481. |
[13] | MA Yuan, JIN Haoyan, WANG Nana, LI Qihan, ZHANG Lingkai. Progress in the Application of Single-cell Transcriptome Sequencing Technology in Spermatogenesis [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(10): 4400-4409. |
[14] | LI Hongyi, YANG Xuefen, LIN Zesen, WU Xiaofei, LYU Qixin, YU Jiali, ZHANG Mao. Effect of Lactobacillus reuteri Replacing Antibiotics on the Expression of Intestinal miRNA in Piglets [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(1): 74-85. |
[15] | LIU Bin, LIU Yan, ZHENG Chen, FENG Tao. Research Progress on the Effects of Natural Products on Animal Reproduction [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(1): 172-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||