China Animal Husbandry & Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (11): 4319-4326.doi: 10.16431/j.cnki.1671-7236.2021.11.042
• Clinical Veterinary Medicine • Previous Articles
REN Xiaoli1, FAN Yuying2, HUANGFU Heping1, DONG Qing1, SHI Dongmei1, LIU Yun2
Received:
2021-04-06
Online:
2021-11-20
Published:
2021-11-01
CLC Number:
REN Xiaoli, FAN Yuying, HUANGFU Heping, DONG Qing, SHI Dongmei, LIU Yun. Research Progress on Epigenetic Regulation Mechanism in Canine Tumor[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(11): 4319-4326.
[1] DAWSON M A.The cancer epigenome:Concepts, challenges, and therapeutic opportunities[J]. Science, 2017, 355(6330):1147-1152. [2] GRUNTZIG K, GRAF R, HASSIG M, et al. The Swiss canine cancer registry:A retrospective study on the occurrence of tumours in dogs in Switzerland from 1955 to 2008[J]. Journal of Comparative Pathology, 2015, 152(2-3):161-171. [3] CHOI J W, YOON H Y, JEONG S W.Clinical outcomes of surgically managed spontaneous tumors in 114 client-owned dogs[J]. Immune Network, 2016, 16(2):116-125. [4] GARDNER H L, FENGER J M, LONDON C A.Dogs as a model for cancer[J]. Annual Review of Animal Biosciences, 2016, 4:199-222. [5] ABDELMEGEED S M, MOHAMMED S.Canine mammary tumors as a model for human disease[J]. Oncology Letters, 2018, 15(6):8195-8205. [6] REBHUN R B, KENT M S, BORROFKA S A, et al. CHOP chemotherapy for the treatment of canine multicentric T-cell lymphoma[J]. Veterinary and Comparative Oncology, 2011, 9(1):38-44. [7] POPHALI P A, MARINELLI L M, KETTERLING R P, et al. High level MYC amplification in B-cell lymphomas:Is it a marker of aggressive disease?[J]. Blood Cancer Journal, 2020, 10(1):5-13. [8] CRUZ C J, MILNER R, ALLEMAN A R, et al. BCR-ABL translocation in a dog with chronic monocytic leukemia[J]. Veterinary Clinical Pathology, 2011, 40(1):40-47. [9] FIGUEIREDO J F, CULVER S, BEHLING-KELLY E, et al. Acute myeloblastic leukemia with associated BCR-ABL translocation in a dog[J]. Veterinary Clinical Pathology, 2012, 41(3):362-368. [10] ENGINLER S O, AKIS I, TOYDEMIR T S, et al. Genetic variations of BRCA1 and BRCA2 genes in dogs with mammary tumours[J]. Veterinary Research Communications, 2014, 38(1):21-27. [11] SALEEM M, GHAZALI M B, WAHAB M, et al. The BRCA1 and BRCA2 genes in early-onset breast cancer patients[J]. Advances in Experimental Medicine and Biology, 2020, 1292:1-12. [12] IQBAL N, IQBAL N.Human epidermal growth factor receptor 2(HER2) in cancers:Overexpression and therapeutic implications[J]. International Journal of Biological Macromolecules, 2014, 2014:852748. [13] PASTOR N, EZQUERRA L J, SANTELLA M, et al. Prognostic significance of immunohistochemical markers and histological classification in malignant canine mammary tumours[J]. Veterinary and Comparative Oncology, 2020, 18(4):753-762. [14] GREENBERG M, BOURC'HIS D.The diverse roles of DNA methylation in mammalian development and disease[J]. Nature Reviews Molecular Cell Biology, 2019, 20(10):590-607. [15] EHRLICH M.DNA hypomethylation in cancer cells[J]. Epigenomics, 2009, 1(2):239-259. [16] KULIS M, ESTELLER M.DNA methylation and cancer[J]. Advances in Human Genetics, 2010, 70:27-56. [17] SKVORTSOVA K, STIRZAKER C, TABERLAY P.The DNA methylation landscape in cancer[J]. Essays in Biochemistry, 2019, 63(6):797-811. [18] NOGUCHI S, MORI T, IGASE M, et al. A novel apoptosis-inducing mechanism of 5-aza-2'-deoxycitidine in melanoma cells:Demethylation of TNF-alpha and activation of FOXO1[J]. Cancer Letters, 2015, 369(2):344-353. [19] NOGUCHI S, MORI T, NAKAGAWA T, et al. DNA methylation contributes toward silencing of antioncogenic microRNA-203 in human and canine melanoma cells[J]. Melanoma Research, 2015, 25(5):390-398. [20] ISHIZAKI T, YAMAZAKI J, JELINEK J, et al. Genome-wide DNA methylation analysis identifies promoter hypermethylation in canine malignant melanoma[J]. Research in Veterinary Science, 2020, 132:521-526. [21] FERRARESSO S, ARICO A, SANAVIA T, et al. DNA methylation profiling reveals common signatures of tumorigenesis and defines epigenetic prognostic subtypes of canine diffuse large B-cell lymphoma[J]. Scientific Reports, 2017, 7(1):11591-11601. [22] SATO M, MOCHIZUKI H, GOTO-KOSHINO Y, et al. Prognostic significance of hypermethylation of death-associated protein kinase (DAPK) gene CpG island in dogs with high-grade B-cell lymphoma[J]. Veterinary and Comparative Oncology, 2018, 16(3):409-415. [23] YAMAZAKI J, JELINEK J, HISAMOTO S, et al. Dynamic changes in DNA methylation patterns in canine lymphoma cell lines demonstrated by genome-widequantitativeDNA methylation analysis[J]. The Veterinary Journal, 2018, 231:48-54. [24] BIONDI L R, TEDARDI M V, GENTILE L B, et al. Quantification of global DNA methylation in canine mammary gland tumors via immunostaining of 5-methylcytosine:Histopathological and clinical correlations[J]. Frontiers in Veterinary Science, 2021, 8:628241. [25] BRANDAO Y O, TOLEDO M B, CHEQUIN A, et al. DNA methylation status of the estrogen receptor alpha gene in canine mammary tumors[J]. Veterinary Pathology, 2018, 55(4):510-516. [26] OTTAVIANO Y L, ISSA J P, PARL F F, et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells[J]. Cancer Research, 1994, 54(10):2552-2555. [27] ZORZAN E, HANSSENS K, GIANTIN M, et al. Mutational hotspot of TET2, IDH1, IDH2, SRSF2, SF3B1, KRAS, and NRAS from human systemic mastocytosis are not conserved in canine mast cell tumors[J]. PLoS One, 2015, 10(11):e0142450. [28] TEFFERI A, LEVINE R L, LIM K H, et al. Frequent TET2 mutations in systemic mastocytosis:Clinical, KITD816V and FIP1L1-PDGFRA correlates[J]. Leukemia, 2009, 23(5):900-904. [29] MCDONALD J T, KRITHARIS A, BEHESHTI A, et al. Correction:Comparative oncology DNA sequencing of canine T cell lymphoma via human hotspot panel[J]. Oncotarget, 2018, 9(70):22693-22702. [30] LUGER K, MADER A W, RICHMOND R K, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution[J]. Nature, 1997, 389(6648):251-260. [31] KEBEDE A F, SCHNEIDER R, DAUJAT S.Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest[J]. FEBS Journal, 2015, 282(9):1658-1674. [32] LAWRENCE M, DAUJAT S, SCHNEIDER R.Lateral thinking:How histone modifications regulate gene expression[J]. Trends in Genetics, 2016, 32(1):42-56. [33] FRAGA M F, BALLESTAR E, VILLAR-GAREA A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer[J]. Nature Genetics, 2005, 37(4):391-400. [34] HASSELL K N.Histone deacetylases and their inhibitors in cancer epigenetics[J]. Diseases, 2019, 7(4):57-69. [35] WAN Y, LIU J, CHAN K M.Histone H3 mutations in cancer[J]. Current Pharmacology Reports, 2018, 4(4):292-300. [36] YANG L, QIU Q, TANG M, et al. Purinostat mesylate is a uniquely potent and selective inhibitor of HDACs for the treatment of BCR-ABL-induced B-cell acute lymphoblastic leukemia[J]. Clinical Cancer Research, 2019, 25(24):7527-7539. [37] ETO S, SAEKI K, YOSHITAKE R, et al. Anti-tumor effects of the histone deacetylase inhibitor vorinostat on canine urothelial carcinoma cells[J]. PLoS One, 2019, 14(6):e0218382. [38] CAO Z, WU W, WEI H, et al. Downregulation of histone-lysine N-methyltransferase EZH2 inhibits cell viability and enhances chemosensitivity in lung cancer cells[J]. Oncology Letters, 2021, 21(1):26-35. [39] JAN S, DAR M I, WANI R, et al. Targeting EHMT2/G9a for cancer therapy:Progress and perspective[J]. European Journal of Clinical Pharmacology, 2021, 893:173827. [40] SAKTHIKUMAR S, ELVERS I, KIM J, et al. SETD2 is recurrently mutated in whole-exome sequenced canine osteosarcoma[J]. Cancer Research, 2018, 78(13):3421-3431. [41] GARDNER H L, SIVAPRAKASAM K, BRIONES N, et al. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2[J]. Communications Biology, 2019, 2(266):266-278. [42] LIU D, XIONG H, ELLIS A E, et al. Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer[J]. Cancer Research, 2014, 74(18):5045-5056. [43] MACIOTTA S, MEREGALLI M, TORRENTE Y.The involvement of microRNAs in neurodegenerative diseases[J]. Frontiers in Cellular Neuroscience, 2013, 7:265-281. [44] ZHOU S S, JIN J P, WANG J Q, et al. miRNAS in cardiovascular diseases:Potential biomarkers, therapeutic targets and challenges[J]. Acta Pharmacologica Sinica, 2018, 39(7):1073-1084. [45] PENG Y, CROCE C M.The role of microRNAs in human cancer[J]. Signal Transduction and Targeted Therapy, 2016, 8(1):15004-15013. [46] BOGGS R M, WRIGHT Z M, STICKNEY M J, et al. microRNA expression in canine mammary cancer[J]. Mammalian Genome, 2008, 19(7-8):561-569. [47] STARKEY M P, COMPSTON-GARNETT L, MALHO P, et al. Metastasis-associated microRNA expression in canine uveal melanoma[J]. Veterinary and Comparative Oncology, 2018, 16(1):81-89. [48] BULKOWSKA M, RYBICKA A, SENSES K M, et al. microRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours[J]. BMC Cancer, 2017, 17(1):278-294. [49] FENGER J M, BEAR M D, VOLINIA S, et al. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis[J]. BMC Cancer, 2014, 14(84):84-99. [50] FENGER J M, ROBERTS R D, IWENOFU O H, et al. miR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines[J]. BMC Cancer, 2016, 16(1):784-802. [51] LOPEZ C M, YU P Y, ZHANG X, et al. miR-34a regulates the invasive capacity of canine osteosarcoma cell lines[J]. PLoS One, 2018, 13(1):e0190086. [52] DAILEY D D, HESS A M, BOUMA G J, et al. microRNA expression changes and integrated pathways associated with poor outcome in canine osteosarcoma[J]. Frontiers in Veterinary Science, 2021, 8:637622. [53] ALBONICO F, MORTARINO M, AVALLONE G, et al. The expression ratio of miR-17-5p and miR-155 correlates with grading in canine splenic lymphoma[J]. Veterinary Immunology and Immunopathology, 2013, 155(1-2):117-123. [54] BORRESEN B, NIELSEN L N, JESSEN L R, et al. Circulating let-7g is down-regulated in Bernese Mountain dogs with disseminated histiocytic sarcoma and carcinomas-A prospective study[J]. Veterinary and Comparative Oncology, 2017, 15(2):525-533. [55] FUJIWARA-IGARASHI A, IGARASHI H, MIZUTANI N, et al. Expression profile of circulating serum microRNAs in dogs with lymphoma[J]. The Veterinary Journal, 2015, 205(2):317-321. [56] CRAIG K, WOOD G A, KELLER S M, et al. microRNA profiling in canine multicentric lymphoma[J]. PLoS One, 2019, 14(12):e0226357. [57] JAIN M, INGOLE S D, DESHMUKH R S, et al. CEA, CA 15-3, and miRNA expression as potential biomarkers in canine mammary tumors[J]. Chromosome Research, 2021, 29(2):175-188. [58] KENT M S, ZWINGENBERGER A, WESTROPP J L, et al. microRNA profiling of dogs with transitional cell carcinoma of the bladder using blood and urine samples[J]. BMC Veterinary Research, 2017, 13(1):339-351. [59] FISH E J, IRIZARRY K J, DEINNOCENTES P, et al. Malignant canine mammary epithelial cells shed exosomes containing differentially expressed microRNA that regulate oncogenic networks[J]. BMC Cancer, 2018, 18(1):832. [60] ASADA H, TOMIYASU H, UCHIKAI T, et al. Comprehensive analysis of miRNA and protein profiles within exosomes derived from canine lymphoid tumour cell lines[J]. PLoS One, 2019, 14(4):e0208567. [61] QIAO Z, YANG D, LIU L, et al. Genome-wide identification and characterization of long non-coding RNAs in MDCK cell lines with high and low tumorigenicities[J]. Genomics, 2020, 112(2):1077-1086. [62] CHEN L, QIAN X, WANG Z, et al. The HOTAIR lncRNA:A remarkable oncogenic promoter in human cancer metastasis[J]. Oncology Letters, 2021, 21(4):302-309. [63] GUPTA R A, SHAH N, WANG K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291):1071-1076. [64] VERMA A, JIANG Y, DU W, et al. Transcriptome sequencing reveals thousands of novel long non-coding RNAs in B cell lymphoma[J]. Genome Medicine, 2015, 1(7):110-126. |
[1] | LIU Min, CHENG Huai, ZHENG Zhenzhen, ZHANG Mengsi, ZHANG Hewei, REN Jingqiang. Eukaryotic Expression and Polyclonal Antibody Preparation of N Protein of Canine Parainfluenza Virus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2287-2294. |
[2] | QIN Mengke, LI Huixin, HAN Hui, MENG Qingda, XIE Shanshan. Research Progress and Direction of Immunotherapeutic Antibodies for Canine Tumor [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2432-2441. |
[3] | DONG Yuan, WANG Jianing, LIU Jiaqi, MA Guanghui, ZHU Jie, YU Huan, WANG Huiyan. Effect of Compound Chinese Medicine Preparations on Immune Function of H22 Tumor-bearing Mice [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(6): 2717-2725. |
[4] | ZHANG Kang, BASANG Zhuza, CIREN Luobu, DANZENG Luosang, NIMA Cangjue, SILANG Wangmu, PUBU Quzhen, DEJI Yuzhen, SUOLANG Quji. Study on the Epigenetic Mechanism of Hypoxic Adaptation in Plateau Animals [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1582-1592. |
[5] | YANG Yaqiong, CHENG Hongxing, LIANG Mingxia, LIU Yulan, FU Shulin, ZHANG Jing, CHEN Hongbo, REN Hongyan, GUO Ling, CHAO Zhe. Integrated Validation for DNA Methylation and mRNA Expression of 4 Genes in Brain of Glaessrerlla parasuis-infected Piglets [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1651-1659. |
[6] | HE Wensheng, XIE Wenshuai, LI Shunkang, KUANG Yanling, LIU Yulan, WANG Dan. Effects of Tumor Necrosis Factor-α on Mouse Small Intestinal Organoid Growth,Barrier Function and Intestinal Functional Cells [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 491-499. |
[7] | GAN Jingyu, SUN Jiaxu, DENG Yuqing, LIU Bo, YU Feng. Research Progress on Diagnosis and Treatment for Common Neoplastic Diseases in Ferrets [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(10): 4635-4642. |
[8] | LUO Shimin, LI Zhongbo. Genetic Diversity and Genetic Evolution of H and F genes of Canine Distemper Virus in Huaihua District [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(8): 3248-3257. |
[9] | YANG Yuanru, JIAO Xue, SONG Weilin, LIU Xufeng, WANG Huiqing, LI Yuehong. Research Progress on the Characterization of Canine Parvovirus VP2 Protein and Preparation of Virus-like Particles Vaccine [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(8): 3286-3293. |
[10] | XU Enshuang, YANG Chunxue, SUN Yue, TIAN Xue, ZHENG Jiasan, LIU Yun. Screening and Analysis of circRNAs Differentially Expressed in Tamoxifen-resistant Canine Mammary Gland Tumor Cells [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(8): 3413-3420. |
[11] | YAN Han, TIAN Yangqing, ANG Yanfen, WANG Yayuan, ZHANG Xuefeng, YAN Yulin. Study on the Isolation, Identification and Culture Characteristics of Canine Hematopoietic Stem Cells [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(7): 2678-2687. |
[12] | YAO Jiawei, HUANG Yujie, CHEN Zhisheng, WANG Bingyun, ZHANG Hui. Immunomodulatory Effects of Dimethyl Alpha-ketoglutarate Pretreatment on Canine Adipose-derived Mesenchymal Stem Cells [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(4): 1642-1652. |
[13] | LIU Bo, LI Meilin, LIU Xu, LIANG Shuangying, MU Baolong, ZHAO Wenting, GE Yansong. Effects of Adipose-derived Stem Cell Conditioned Medium Alleviates Oxidative Stress Injury Induced by Sodium Taurocholate and Trypsin [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(2): 798-806. |
[14] | SONG Peijia, JIN Yipeng, LIN Degui, LIN Jiahao. Clinical Research Progress on Canine Periodontal Diseases [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(2): 838-845. |
[15] | HE Shi, XIAN Weihang, WU Zhongheng, CHEN Shengfeng, RUAN Huimin, YE Cailing, WANG Cuilin, WANG Bingyun. Therapeutic Clinical Effect of Canine UC-MSCs Combined with Trochlear Groove Reconstruction on Patellar Dislocation in Dogs [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(11): 4768-4775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||