中国畜牧兽医 ›› 2021, Vol. 48 ›› Issue (9): 3483-3490.doi: 10.16431/j.cnki.1671-7236.2021.09.041
袁玮艺, 林小枫, 张宇豪, 肖劲男, 王妍
修回日期:
2021-04-16
出版日期:
2021-09-20
发布日期:
2021-09-17
通讯作者:
王妍
E-mail:wangyan11@nwsuaf.edu.cn
作者简介:
袁玮艺(2000-),女,山东烟台人,本科生,研究方向:动物临床疾病,E-mail:yuanwy@nwsuaf.edu.cn;林小枫(2000-),女,河北保定人,本科生,研究方向:动物临床疾病,E-mail:linxf2018@nwsuaf.edu.cn
基金资助:
YUAN Weiyi, LIN Xiaofeng, ZHANG Yuhao, XIAO Jinnan, WANG Yan
Revised:
2021-04-16
Online:
2021-09-20
Published:
2021-09-17
摘要: 犬脓皮病是一类主要由耐甲氧西林伪中间型葡萄球菌(MRSP)感染而引起的化脓性皮肤病。葡萄球菌是一种人与动物均易感的细菌,常引起各种化脓性疾病,其中,MRSP作为一种动物源葡萄球菌还会成为耐药基因贮存库,可将耐药基因通过环境或食物链传给人类。近年来MRSP造成的皮肤疾病病例大幅上升,给感染的控制带来挑战。笔者综合了犬脓皮病致病菌的抗菌药耐药性及其消毒剂抗性的相关研究,从MRSP的致病机制出发,总结了MRSP通过破坏细胞免疫系统的功能导致感染发生的相关机制,简述了多个国家MRSP对抗菌药的显著耐药性与相关耐药基因,如mecA和cat基因等,介绍了MRSP对胍类消毒剂与季铵盐类消毒剂的抗性及抗性机制,对外排泵、基因调控与抗性基因的可转移性等多种机制进行了论述,同时为避免MRSP对抗菌药与消毒剂的共同耐药性对犬脓皮病的治疗造成干扰,笔者从移动遗传元件介导的获得性抗性与依赖于细菌细胞结构的固有抗性等方面系统地分析了MRSP对消毒剂抗性和抗菌药耐药性之间的争议与联系,以期寻找一种科学合理的治疗方案,为犬脓皮病的临床用药提供参考。
中图分类号:
袁玮艺, 林小枫, 张宇豪, 肖劲男, 王妍. 犬脓皮病耐甲氧西林伪中间型葡萄球菌抗菌药耐药性及消毒剂抗性研究进展[J]. 中国畜牧兽医, 2021, 48(9): 3483-3490.
YUAN Weiyi, LIN Xiaofeng, ZHANG Yuhao, XIAO Jinnan, WANG Yan. Research Progress on Antimicrobial and Disinfectant Resistance of Methicillin-resistant Staphylococcus pseudintermedius in Canine Pyoderma[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(9): 3483-3490.
[1] RAFATPANAH S, RAD M, MOVASSAGHI A R, KHOSHNEGAH J, et al. Clinical, bacteriological and histopathological aspects of first-time pyoderma in a population of Iranian domestic dogs:A retrospective study[J]. Iran Journal of Veterinary Research, 2020, 21(2):130-135. [2] ABOUELKHAIR M A, BEMIS D A, KANIA S A, et al. Characterization of recombinant wild-type and nontoxigenic protein a from Staphylococcus pseudintermedius[J]. Virulence, 2018, 9(1):1050-1061. [3] FADOK V A, IRWIN K.Sodium hypochlorite/salicylic acid shampoo for treatment of canine staphylococcal pyoderma[J]. Journal of the American Animal Hospital Association, 2019, 55(3):117-123. [4] BÄUMER W, BIZIKOVA P, JACOB M, et al. Establishing a canine superficial pyoderma model[J]. Applied Microbiology and Biotechnology, 2017, 122(2):331-337. [5] HYUN J E, CHUNG T H, HWANG C Y, et al. Identification of VIM-2 metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from dogs with pyoderma and otitis in Korea[J]. Veterinary Dermatology, 2018, 29(3):186-191. [6] AALTONEN K, KANT R, EKLUND M, et al. Streptococcus halichoeri:Comparative genomics of an emerging pathogen[J]. International Journal of Genomics, 2020, 18:8708305. [7] ZHENG Y, QIN C, ZHANG X, et al. The tst gene associated Staphylococcus aureus pathogenicity island facilitates its pathogenesis by promoting the secretion of inflammatory cytokines and inducing immune suppression[J]. Microbial Pathogenesis, 2020, 138:103797. [8] DEVRIESE L A, VANCANNEYT M, BAELE M, et al. Staphylococcus pseudintermedius sp.nov., a coagulase-positive species from animals[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 4):1569-1573. [9] PARLET C P, BROWN M M, HORSWILL A R.Commensal staphylococci influence Staphylococcus aureus skin colonization and disease[J]. Trends Microbiology, 2019, 27(6):497-507. [10] BERENDS E T M, ZHENG X, ZWACK E E, et al. Staphylococcus aureus impairs the function of and kills human dendritic cells via the lukab toxin[J]. mBio, 2019, 10(1):e01918-18. [11] BALRAADJSING P P, DE JONG E C, VAN WAMEL W J B, et al. Dendritic cells internalize Staphylococcus aureus more efficiently than Staphylococcus epidermidis, but do not differ in induction of antigen-specific T cell proliferation[J]. Microorganisms, 2019, 8(1):19. [12] SEWID A H, HASSAN M N, AMMAR A M, et al. Staphylococcus pseudintermedius Sbi paralogs inhibit complement and bind IgM IgG Fc and Fab[J]. PLoS One, 2019, 14(7):e0219817. [13] 周传铎, 赵然, 金艺鹏, 等.北京地区警犬皮肤伪中间型葡萄球菌药敏试验及耐药基因筛查[J]. 中国兽医杂志, 2016, 52(11):100-103. ZHOU C D, ZHAO R, JIN Y P, et al. Antibacterial sensitive test and drug-resistant genetic screening for Staphylococcus pseudintermedius from the skins of police dogs in Beijing area[J]. Chinese Journal of Veterinary Medicine, 2016, 52(11):100-103.(in Chinese) [14] 刘文静, 徐英春, 杨启文, 等.2019年北京协和医院细菌耐药性分析[J]. 协和医学杂志:2021, 12(2):202-209. LIU W J, XU Y C, YANG Q W, et al. Analysis of antimicrobial resistance in Peking Union Medical College Hospital in 2019[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2):202-209.(in Chinese) [15] FEßLER A T, SCHUENEMANN R, KADLEC K, et al. Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) among employees and in the environment of a small animal hospital[J]. Veterinary Microbiology, 2018, 221:153-158. [16] WORTHING K A, ABRAHAM S, COOMBS G W, et al. Clonal diversity and geographic distribution of methicillin-resistant Staphylococcus pseudintermedius from Australian animals:Discovery of novel sequence types[J]. Veterinary Microbiology, 2018, 213:58-65. [17] NISA S, BERCKER C, MIDWINTER A C, et al. Combining MALDI-TOF and genomics in the study of methicillin resistant and multidrug resistant Staphylococcus pseudintermedius in New Zealand[J]. Scientific Reports, 2019, 9(1):1271. [18] 国家卫生计生委合理用药专家委员会.2018年全国细菌耐药监测报告[J]. 中国合理用药探索, 2020, 17(1):1-10. COMMITTEE OF EXPERTS ON RATIONAL DRUG USE OF THE NATIONAL HEALTH AND FAMILY PLANNING COMMISSION OF THE P.R.CHINA.2018 National bacterial resistance surveillance report[J]. Chinese Journal of Rational Drug Use, 2020, 17(1):1-10.(in Chinese) [19] CRAFT K M, NGUYEN J M, BERG L J, et al. Methicillin-resistant Staphylococcus aureus (MRSA):Antibiotic-resistance and the biofilm phenotype[J]. Medchemcomm, 2019, 10(8):1231-1241. [20] WU S, LIN K, LIU Y, et al. Two-component signaling pathways modulate drug resistance of Staphylococcus aureus (Review)[J]. Biomedical Reports, 2020, 13(2):5. [21] BAJWA J.Canine superficial pyoderma and therapeutic considerations[J]. Canadian Veterinary Journal, 2016, 57(2):204-206. [22] GAGETTI P, WATTAM A R, GIACOBONI G, et al. Identification and molecular epidemiology of methicillin resistant Staphylococcus pseudintermedius strains isolated from canine clinical samples in Argentina[J]. BMC Veterinary Research, 2019, 15(1):264. [23] GONZÁLEZ-DOMÍNGUEZ M S, CARVAJAL H D, CALLE-ECHEVERRI D A, et al. Molecular detection and characterization of the mecA and nuc genes from Staphylococcus species (S.aureus, S.pseudintermedius, and S.schleiferi) isolated from dogs suffering superficial pyoderma and their antimicrobial resistance profiles[J]. Frontiers in Veterinary Science, 2020, 7:376. [24] WEGENER A, BROENS E M, ZOMER A, et al. Comparative genomics of phenotypic antimicrobial resistances in methicillin-resistant Staphylococcus pseudintermedius of canine origin[J]. Veterinary Microbiology, 2018, 225:125-131. [25] FROSINI S M, BOND R, RANTALA M, et al. Genetic resistance determinants to fusidic acid and chlorhexidine in variably susceptible staphylococci from dogs[J]. BMC Microbiology, 2019, 19(1):81. [26] RAFFERTY R, ROBINSON V H, HARRIS J, et al. A pilot study of the in vitro antimicrobial activity and in vivo residual activity of chlorhexidine and acetic acid/boric acid impregnated cleansing wipes[J]. BMC Veterinary Research, 2019, 15(1):382. [27] WALKER M A, SINGH A, GIBSON T W, et al. Presence of qac genes in clinical isolates of methicillin-resistant and methicillin-susceptible Staphylococcus pseudintermedius and their impact on chlorhexidine digluconate susceptibility[J]. Veterinary Surgery, 2020, 49(5):971-976. [28] MURAYAMA N, NAGATA M, TERADA Y, et al. In vitro antiseptic susceptibilities for Staphylococcus pseudintermedius isolated from canine superficial pyoderma in Japan[J]. Veterinary Dermatology, 2013, 24(1):126-129. [29] 向蓉, 贾潇岳, 陈光辉, 等.社区和医院获得性耐甲氧西林金黄色葡萄球菌耐药基因及耐消毒剂基因的检测[J]. 中国消毒学杂志, 2020, 37(6):436-440. XIANG R, JIA X Y, CHEN G H, et al. Detection of drug resistance gene and disinfectant resistance gene of methicillin-resistant Staphylococcus aureus in community and hospital[J]. Chinese Journal of Disinfection, 2020, 37(6):436-440.(in Chinese) [30] 纵帅, 马萍, 徐萍萍, 等.临床分离耐甲氧西林金黄色葡萄球菌耐药表型及耐消毒剂基因检测[J]. 中国消毒学杂志, 2016, 33(9):841-844. ZONG S, MA P, XU P P, et al. Detection of antibiotic resistance phenotype and disinfectant resistant gene of MRSA isolated from nosocomial infection[J]. Chinese Journal of Disinfection, 2016, 33(9):841-844.(in Chinese) [31] 孟含, 李庆, 贺苏皖, 等.市售猪肉金黄色葡萄球菌的分离及菌株耐消毒剂基因的检测[J]. 现代食品科技, 2020, 36(4):296-303. MENG H, LI Q, HE S W, et al. Isolation of Staphylococcus aureus from pork source and the detection of disinfectant resistance genes[J]. Modern Food Science and Technology, 2020, 36(4):296-303.(in Chinese) [32] LIU Q, ZHAO H, HAN L, et al. Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA)[J]. Diagnostic Microbiology and Infectious, 2015, 82(4):278-283. [33] WEST A M, TESKA P J, LINEBACK C B, et al. Strain, disinfectant, concentration, and contact time quantitatively impact disinfectant efficacy[J]. Antimicrobial Resistance and Infection Control, 2018, 7:49. [34] LINEBACK C B, NKEMNGONG C A, WU S T, et al. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds[J] .Antimicrobial Resistance and Infection Control, 2018, 7:154. [35] KONG H, FANG L, JIANG R, et al. Distribution of sasX, pvl, and qacA/B genes in epidemic methicillin-resistant Staphylococcus aureus strains isolated from East China[J]. Infection and Drug Resistance, 2018, 11:55-59. [36] NEUBERGER A, DU D, LUISI B F.Structure and mechanism of bacterial tripartite efflux pumps[J]. Research in Microbiology, 2018, 169(7-8):401-413. [37] SUN Y, HU X, GUO D, SHI C, et al. Disinfectant resistance profiles and biofilm formation capacity of Escherichia coli isolated from retail chicken[J]. Microbial Drug Resistance, 2019, 25(5):703-711. [38] YOON E J, CHABANE Y N, GOUSSARD S, et al. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii[J]. mBio, 2015, 6(2):e00309-15. [39] BAY D C, TURNER R J.Diversity and evolution of the small multidrug resistance protein family[J]. BMC Evolutionary Biology, 2009, 9:140. [40] SUBEDI D, VIJAY A K, WILLCOX M, et al. Study of disinfectant resistance genes in ocular isolates of Pseudomonas aeruginosa[J]. Antibiotics (Basel), 2018, 7(4):88. [41] WANG Q, XU Y, ZHAO X, et al. A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation[J]. Journal of the American Chemical Society, 2007, 129(20):6380-6381. [42] WORTHING K A, MARCUS A, ABRAHAM S, et al. Qac genes and biocide tolerance in clinical veterinary methicillin-resistant and methicillin-susceptible Staphylococcus aureus and Staphylococcus pseudintermedius[J]. Veterinary Microbiology, 2018, 216:153-158. [43] SMITH J T, AMADOR S, MCGONAGLE C J, et al. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States[J]. Communications Biology, 2020, 3(1):282. [44] LU M, GONG T, ZHANG A, et al. Mobile genetic elements in Streptococci[J]. Current Issues in Molecular Biology, 2019, 32:123-166. [45] MC CARLIE S, BOUCHER C E, BRAGG R R, et al. Molecular basis of bacterial disinfectant resistance[J]. Drug Resistance Updates, 2020, 48:100672. [46] DURRANT M G, LI M M, SIRANOSIAN B A, et al. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation[J]. Cell Host & Microbe, 2020, 28(5):767. [47] HOSSEINI R, KUEPPER J, KOEBBING S, et al. Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements[J]. Microbial Biotechnology, 2017, 10(6):1558-1568. [48] NICOLAE DOPCEA G, DOPCEA I, NANU A E, et al. Resistance and cross-resistance in Staphylococcus spp.strains following prolonged exposure to different antiseptics[J]. Journal of Global Antimicrobial Resistance, 2020, 21:399-404. [49] WU D, LU R, CHEN Y, et al. Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus[J]. Journal of Global Antimicrobial Resistance, 2016, 7:61-66. [50] BHARDWAJ P, HANS A, RUIKAR K, et al. Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure[J]. Antimicrobial Agents and Chemotherapy, 2017, 62(1):e01235-17. [51] DENNY J, MUNRO C L.Chlorhexidine bathing effects on health-care-associated infections[J]. Biological Research for Nursing, 2017, 19(2):123-136. [52] KHAN S, BEATTIE T K, KNAPP C W, et al. Relationship between antibiotic-and disinfectant-resistance profiles in bacteria harvested from tap water[J]. Chemosphere, 2016, 152:132-141. [53] MAERTENS H, DE REU K, MEYER E, et al. Limited association between disinfectant use and either antibiotic or disinfectant susceptibility of Escherichia coli in both poultry and pig husbandry[J]. BMC Veterinary Research, 2019, 15(1):310. [54] HIJAZI K, MUKHOPADHYA I, ABBOTT F, et al. Susceptibility to chlorhexidine amongst multidrugresistant clinical isolates of Staphylococcus epidermidis from bloodstream infections[J]. International Journal of Antimicrobial Agents, 2016, 48(1):86-90. [55] WALES A D, DAVIES R H.Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens[J]. Antibiotics (Basel), 2015, 4(4):567-604. [56] PARTRIDGE S R, KWONG S M, FIRTH N, et al. Mobile genetic elements associated with antimicrobial resistance[J]. Clinical Microbiology Reviews, 2018, 31(4):e00088-17. [57] GILLINGS M R.Lateral gene transfer, bacterial genome evolution, and the anthropocene[J]. Annals of the New York Academy of Sciences, 2017, 1389(1):20-36. [58] PAL C, ASIANI K, ARYA S, et al. Metal resistance and its association with antibiotic resistance[J]. Advances in Microbial Physiology, 2017, 70:261-313. [59] GNANADHAS D P, MARATHE S A, CHAKRAVORTTY D, et al. Biocides-resistance, cross-resistance mechanisms and assessment[J]. Expert Opinion on Investigational Drugs, 2013, 22(2):191-206. [60] PAL C, BENGTSSON-PALME J, KRISTIANSSON E, et al. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential[J]. BMC Genomics, 2015, 16:964. [61] PAUL D, CHAKRABORTY R, MANDAL S M.Biocides and health-care agents are more than just antibiotics:Inducing cross to co-resistance in microbes[J]. Ecotoxicology and Environmental Safety, 2019, 174:601-610. [62] KIM M, WEIGAND MR, OH S, et al. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance[J]. Applied and Environmental Microbiology, 2018, 84(17):e01201-18. [63] AMSALU A, SAPULA S A, DE BARROS LOPES M, et al. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches:A case study in the development of multidrug resistance in environmental hotspots[J]. Microorganisms, 2020, 8(11):1647. [64] TENG Z H, GUO Y, LIU X Q, et al. The aflavin-3, 3'-digallate increases the antibacterial activity of β-lactam antibiotics by inhibiting metallo-β-lactamase activity[J]. Journal of Cellular and Molecular Medicine, 2019, 23(10):6955-6964. [65] LARSUPROM L, RUNGROJ N, LEKCHAROENSUK C, et al. In vitro antibacterial activity of mangosteen (Garcinia mangostana Linn.) crude extract against Staphylococcus pseudintermedius isolates from canine pyoderma[J]. Veterinary Dermatology, 2019, 30(6):487-490. [66] BÄUMER W, JACOBS M, TAMAMOTO-MOCHIZUKI C, et al. Efficacy study of a topical treatment with a plant extract with antibiofilm activities using an in vivo model of canine superficial pyoderma[J]. Veterinary Dermatology, 2020, 31:86-89. [67] 彭华, 李淑红, 聂佳伟, 等.犬脓皮病病原菌分离鉴定及耐药性分析[J]. 畜牧与饲料科学, 2019, 40(8):104-106. PENG H, LI S H, NIE J W, et al. Isolation, identification and antimicrobial resistance profile of pathogenic bacteria of canine pyoderma[J]. Animal Husbandry and Feed Science, 2019, 40(8):104-106.(in Chinese) [68] TRESCH M, MEVISSEN M, AYRLE H, et al. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review[J]. BMC Veterinary Research, 2019, 15(1):174. |
[1] | 王雪杨, 林展, 李嘉琛, 席鹏, 张贺伟. 植物提取物与质粒携带的抗生素耐药基因水平转移关系的研究进展[J]. 中国畜牧兽医, 2025, 52(7): 3479-3488. |
[2] | 全琛宇, 周英宁, 蒲婵娟, 陈婷婷, 许心婷, 卢冰霞, 许艺兰, 赵硕, 杨讯业, 段群棚, 秦毅斌, 李斌, 陈忠伟, 何颖. 广西罗非鱼源无乳链球菌分离鉴定及耐药性分析[J]. 中国畜牧兽医, 2025, 52(6): 2893-2903. |
[3] | 于堃, 赵杰, 马芹, 石艳红, 张筱, 刘子涵, 张新婷, 汪建华, 李玉峰. 商品肉鸭致病性肠炎沙门菌的分离鉴定及耐药性与致病性分析[J]. 中国畜牧兽医, 2025, 52(5): 2353-2363. |
[4] | 龙宝琴, 王辉翔, 余林金, 哈尔勒哈·阿曼太, 陈浩然, 许梦娇, 史陇兴, 李有文. 2株鹌鹑源肺炎克雷伯菌的分离鉴定及生物学特性分析[J]. 中国畜牧兽医, 2025, 52(5): 2364-2378. |
[5] | 武佳鑫, 孙月, 毛伟, 刘淑英, 尹凯雯, 张志丹, 韩凯凡, 赵红霞. 羊呼吸道溶血性曼氏杆菌的分离鉴定及其致病性和耐药性研究[J]. 中国畜牧兽医, 2025, 52(5): 2421-2431. |
[6] | 蔺冰冰, 赵洪哲, 关娜, 乌日古木拉, 其根, 张杨, 温永俊, 王凤雪. 内蒙古部分地区牛源产气荚膜梭菌的分离鉴定及耐药性分析[J]. 中国畜牧兽医, 2025, 52(4): 1873-1883. |
[7] | 尹凯雯, 毛伟, 曹金山, 孙月, 董海燕, 韩凯凡, 王博, 李培锋, 张志丹, 樊宏亮, 郭宇, 赵红霞. 内蒙古地区牛呼吸道感染的主要病原菌及支原体分离鉴定及耐药性和毒力基因检测[J]. 中国畜牧兽医, 2025, 52(3): 1328-1341. |
[8] | 李娜, 刘重阳, 张靖靖, 玛丽雅其其格, 珠娜, 陆斌, 海鹰. 1株羊源D型产气荚膜梭菌的分离鉴定及耐药性分析[J]. 中国畜牧兽医, 2025, 52(3): 1352-1359. |
[9] | 李扬, 徐晶晶, 张小玉, 李娜娜, 余星雨, 冷青文, 李彦芳, 屈勇刚. 新疆某规模化奶牛场乳源金黄色葡萄球菌的分离鉴定、耐药分析及毒力基因检测[J]. 中国畜牧兽医, 2025, 52(3): 1370-1382. |
[10] | 戴婷婷, 陈海玉, 段楚楚, 刘荣昌, 李宇蓉, 严淑涵, 陈梦诗, 刘露薇, 包银莉, 程艳青, 林炜明, 黄翠琴, 郑新添. 鸡源携带多黏菌素耐药基因mcr-1大肠杆菌耐药性与毒力基因相关性分析[J]. 中国畜牧兽医, 2025, 52(3): 1393-1404. |
[11] | 刘泽武, 樊月圆, 袁嘉芮, 格桑卓嘎, 班旦, 白卫兵, 茶金龙, 四朗玉珍, 富国文. 1株羊源伪结核棒状杆菌的分离鉴定及耐药性分析[J]. 中国畜牧兽医, 2025, 52(3): 1405-1415. |
[12] | 李娜娜, 余星雨, 侯宫明珠, 李扬, 郭亚奇, 郑培, 李彦芳, 梁晏, 何高明, 屈勇刚. 猪源霍氏肠杆菌的分离鉴定及其耐药性、致病性分析[J]. 中国畜牧兽医, 2025, 52(1): 376-388. |
[13] | 廖慧群, 赵美, 曾国辉, 苏仁伟, 邓衔柏. 林麝源肺炎克雷伯菌耐药性及毒力基因分析[J]. 中国畜牧兽医, 2025, 52(1): 411-421. |
[14] | 马振, 王隆胜, 唐泽宇, 闵鹏飞, 赵健豪, 孟凡奇, 薛书江, 贾立军. 珲春敬信湿地候鸟白额雁恶臭假单胞菌的分离鉴定及药物敏感性分析[J]. 中国畜牧兽医, 2025, 52(1): 461-469. |
[15] | 赵星, 梁军, 李阳, 杨丹娇, 陈朝喜. 河曲马源大肠杆菌耐药相关基因检测及外排泵抑制剂对其生物被膜的影响[J]. 中国畜牧兽医, 2024, 51(8): 3603-3614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||