中国畜牧兽医 ›› 2021, Vol. 48 ›› Issue (11): 4115-4124.doi: 10.16431/j.cnki.1671-7236.2021.11.021
刘理想, 赵向远, 邵静, 范冰峰, 韩玉萍, 杨镒峰, 许保增
收稿日期:
2021-03-23
出版日期:
2021-11-20
发布日期:
2021-11-01
通讯作者:
许保增
E-mail:xubaozeng@caas.cn
作者简介:
刘理想(1995-),男,陕西渭南人,博士生,研究方向:特种经济动物饲养,E-mail:836497785@qq.com
基金资助:
LIU Lixiang, ZHAO Xiangyuan, SHAO Jing, FAN Bingfeng, HAN Yuping, YANG Yifeng, XU Baozeng
Received:
2021-03-23
Online:
2021-11-20
Published:
2021-11-01
摘要: 雌性生殖细胞进行减数分裂时易发生染色体分离错误而产生非整倍体卵母细胞,其受精后会产生非整倍体胚胎,导致出生缺陷或胚胎致死,是影响哺乳动物繁殖的重要因素。卵母细胞在第一次减数分裂前期发生同源染色体联会,此时DNA双链断裂引发重组。重组时缺乏交叉、重组事件数量的减少及交叉靠近端粒或着丝粒导致染色体发生同向分离或不分离,从而产生非整倍体卵母细胞。减数分裂期间,当染色体的端粒共向于同一极或没有完全附着在纺锤体微管上时,纺锤体组装检查点(spindle assembly checkpoint,SAC)被激活,E3泛素连接酶APC/Cyclome (APC/C)沉默,保护分离酶抑制蛋白(securin)和细胞周期蛋白B (cyclin B)不被降解,从而抑制分离酶和染色体的分离。直到所有染色体与纺锤体实现稳定的双极定向并正确排列到赤道板上,SAC关闭,染色体正确分离。卵母细胞中SAC蛋白缺失,导致SAC不能有效地监测端粒在纺锤体上的正确附着,发生染色体分离错误,从而产生非整倍体卵母细胞。因此,通过现代分子技术手段解析非整倍体卵母细胞所涉及的机制是保护哺乳动物生育的重要目标。作者主要介绍了卵母细胞减数分裂的特点,详细阐述了卵母细胞非整倍体发生的染色体分离错误的分子机制,以期为开发卵母细胞非整倍体的治疗手段提供参考。
中图分类号:
刘理想, 赵向远, 邵静, 范冰峰, 韩玉萍, 杨镒峰, 许保增. 哺乳动物卵母细胞非整倍体产生机制的研究进展[J]. 中国畜牧兽医, 2021, 48(11): 4115-4124.
LIU Lixiang, ZHAO Xiangyuan, SHAO Jing, FAN Bingfeng, HAN Yuping, YANG Yifeng, XU Baozeng. Advances in Mechanism of Aneuploidy in Mammalian Oocytes[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(11): 4115-4124.
[1] JONES K T, LANE S I.Molecular causes of aneuploidy in mammalian eggs[J]. Development, 2013, 140(18):3719-3730. [2] MIKWAR M, MACFARLANE A J, MARCHETTI F.Mechanisms of oocyte aneuploidy associated with advanced maternal age[J]. Mutation Research-Reviews in Mutation Research, 2020, 785:108320. [3] 陈佳, 伍琼芳.胚胎染色体非整倍体的形成机制及诊疗新进展[J]. 江西医药, 2019, 54(5):571-576. CHEN J, WU Q F.Mechanism of chromosome aneuploidy in embryos and new advances in diagnosis and treatment[J]. Jiangxi Medical Journal, 2019, 54(5):571-576.(in Chinese) [4] JACOBS P A, STRONG J A.A case of human intersexuality having a possible xxy sex-determining mechanism[J]. Nature, 1959, 183(4657):302-303. [5] NAGAOKA S I, HASSOLD T J, HUNT P A.Human aneuploidy:Mechanisms and new insights into an age-old problem[J]. Nature Reviews Genetics, 2012, 13(7):493-504. [6] HERBERT M, KALLEAS D, COONEY D, et al. Meiosis and maternal aging:Insights from aneuploid oocytes and trisomy births[J]. Cold Spring Harbor Perspectives Biology, 2015, 7(4):a017970. [7] SAMANGO-SPROUSE C, KIRKIZLAR E, HALL M P, et al. Incidence of x and y chromosomal aneuploidy in a large child bearing population[J]. PLoS One, 2016, 11(8):e0161045. [8] TARTAGLIA N R, AYARI N, HUTAFF-LEE C, et al. Attention-deficit hyperactivity disorder symptoms in children and adolescents with sex chromosome aneuploidy:Xxy, xxx, xyy, and xxyy[J]. Journal of Devemental Behavioral Pediatrics, 2012, 33(4):309-318. [9] VISOOTSAK J, ROSNER B, DYKENS E, et al. Behavioral phenotype of sex chromosome aneuploidies:48, xxyy, 48, xxxy, and 49, xxxxy[J]. American Journal of Medical Genetics, 2007, 143A(11):1198-1203. [10] NICOLAIDIS P, PETERSEN M B.Origin and mechanisms of non-disjunction in human autosomal trisomies[J]. Human Reproduction, 1998, 13(2):313-319. [11] CLIFT D, SCHUH M.Restarting life:Fertilization and the transition from meiosis to mitosis[J]. Nature Reviews Molecular Cell Biology, 2013, 14(9):549-562. [12] EL YAKOUBI W, WASSMANN K.Meiotic divisions:No place for gender equality[J]. Advances in Experimental Medicine and Biology, 2017, 1002:1-17. [13] DURO E, MARSTON A L.From equator to pole:Splitting chromosomes in mitosis and meiosis[J]. Genes Development, 2015, 29(2):109-122. [14] 美荣, 乌云达来.减数分裂型黏连蛋白亚基SMC1β和STAG3在染色体运动中的功能启动时期研究[J]. 内蒙古师范大学学报(自然科学版), 2020, 49(4):283-290. MEI R, WU Y D L.Study on the functional start-up period of SMC1β and STAG3 in chromosome movement[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2020, 49(4):283-290.(in Chinese) [15] ZICKLER D, KLECKNER N.Recombination, pairing, and synapsis of homologs during meiosis[J]. Cold Spring Harbor Perspectives in Biology, 2015, 7(6):a016626. [16] BUCCIONE R, SCHROEDER A C, EPPIG J J.Interactions between somatic cells and germ cells throughout mammalian oogenesis[J]. Biology of Reproduction, 1990, 43(4):543-547. [17] WATANABE Y.Geometry and force behind kinetochore orientation:Lessons from meiosis[J]. Nature Reviews Molecular Cell Biology, 2012, 13(6):370-382. [18] LEE J, KITAJIMA T S, TANNO Y, et al. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells[J]. Nature Cell Biology, 2008, 10(1):42-52. [19] MARSTON A L, AMON A.Meiosis:Cell-cycle controls shuffle and deal[J]. Nature Reviews Molecular Cell Biology, 2004, 5(12):983-997. [20] WANG S, LIU Y, SHANG Y, et al. Crossover interference, crossover maturation, and human aneuploidy[J]. Bioessays, 2019, 41(10):e1800221. [21] 蒋涵玮, 江小华, 叶经纬, 等.联会复合体:减数分裂的结构基础[J]. 生理学报, 2020, 72(1):84-90. JIANG H W, JIANG X H, YE J W, et al. Synaptonemal complex:The fundamental structure of meiosis[J]. Acta Physiologica Sinica, 2020, 72(1):84-90.(in Chinese) [22] BAUDAT F, IMAI Y, DE MASSY B.Meiotic recombination in mammals:Localization and regulation[J]. Nature Reviews Genetics, 2013, 14(11):794-806. [23] HANDEL M A, SCHIMENTI J C.Genetics of mammalian meiosis:Regulation, dynamics and impact on fertility[J]. Nature Reviews Genetics, 2010, 11(2):124-136. [24] MACLENNAN M, CRICHTON J H, PLAYFOOT C J, et al. Oocyte development, meiosis and aneuploidy[J]. Seminar Cell Biology of Reproduction, 2015, 45:68-76. [25] OLIVER T R, FEINGOLD E, YU K, et al. New insights into human nondisjunction of chromosome 21 in oocytes[J]. PLoS Genetics, 2008, 4(3):e1000033. [26] CHIANG T, SCHULTZ R M, LAMPSON M A.Meiotic origins of maternal age-related aneuploidy[J]. Biology of Reproduction, 2012, 86(1):1-7. [27] GREANEY J, WEI Z, HOMER H.Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors[J]. Human Reproduction Update, 2018, 24(2):135-161. [28] HUNTER N.Meiotic recombination:The essence of heredity[J]. Cold Spring Harbor Perspectives in Biology, 2015, 7(12):a016618. [29] FRAGOULI E, ALFARAWATI S, GOODALL N N, et al. The cytogenetics of polar bodies:Insights into female meiosis and the diagnosis of aneuploidy[J]. Molecular Human Reproduction, 2011, 17(5):286-295. [30] CHIANG T, DUNCAN F E, SCHINDLER K, et al. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes[J]. Current Biology, 2010, 20(17):1522-1528. [31] SHERMAN S L, LAMB N E, FEINGOLD E.Relationship of recombination patterns and maternal age among non-disjoined chromosomes 21[J]. Biochemical Society Transactions, 2006, 34(Pt 4):578-580. [32] MIHAJLOVIC A I, FITZHARRIS G.Segregating chromosomes in the mammalian oocyte[J]. Current Biology, 2018, 28(16):R895-R907. [33] OTTOLINI C S, NEWNHAM L, CAPALBO A, et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates[J]. Nature Genetics, 2015, 47(7):727-735. [34] VERTII A, HEHNLY H, DOXSEY S.The centrosome, a multitalented renaissance organelle[J]. Cold Spring Harbor Perspectives in Biology, 2016, 8(12):a025049. [35] PROSSER S L, PELLETIER L.Mitotic spindle assembly in animal cells:A fine balancing act[J]. Cold Spring Harbor Perspectives in Biology, 2017, 18(3):187-201. [36] SZOLLOSI D, CALARCO P, DONAHUE R P.Absence of centrioles in the first and second meiotic spindles of mouse oocytes[J]. Journal of Cell Science, 1972, 11(2):521-541. [37] HERTIG A T, ADAMS E C.Studies on the human oocyte and its follicle.Ⅰ.Ultrastructural and histochemical observations on the primordial follicle stage[J]. The Journal of Cell Biology, 1967, 34(2):647-675. [38] MIKELADZE-DVALI T, VON TOBEL L, STRNAD P, et al. Analysis of centriole elimination during C.elegans oogenesis[J]. Development, 2012, 139(9):1670-1679. [39] PIMENTA-MARQUES A, BENTO I, LOPES C A, et al. A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster[J]. Science, 2016, 353(6294):aaf4866. [40] MANANDHAR G, SCHATTEN H, SUTOVSKY P.Centrosome reduction during gametogenesis and its significance[J]. Biology of Reproduction, 2005, 72(1):2-13. [41] SKOLD H N, KOMMA D J, ENDOW S A.Assembly pathway of the anastral drosophila oocyte meiosis Ⅰ spindle[J]. Journal of Cell Science, 2005, 118(Pt 8):1745-1755. [42] CARABATSOS M J, COMBELLES C M, MESSINGER S M, et al. Sorting and reorganization of centrosomes during oocyte maturation in the mouse[J]. Microscopy Research and Technique, 2000, 49(5):435-444. [43] GUETH-HALLONET C, ANTONY C, AGHION J, et al. Gamma-tubulin is present in acentriolar MTOCs during early mouse development[J]. Journal of Cell Science, 1993, 105(Pt 1):157-166. [44] MA W, BAUMANN C, VIVEIROS M M.NEDD1 is crucial for meiotic spindle stability and accurate chromosome segregation in mammalian oocytes[J]. Developmental Biology, 2010, 339(2):439-450. [45] CLIFT D, SCHUH M.A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes[J]. Nature Communications, 2015, 6:7217. [46] HEALD R, TOURNEBIZE R, BLANK T, et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts[J]. Nature, 1996, 382(6590):420-425. [47] CARAZO-SALAS R E, GUARGUAGLINI G, GRUSS O J, et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation[J]. Nature, 1999, 400(6740):178-181. [48] CLARKE P R, ZHANG C.Spatial and temporal coordination of mitosis by Ran GTPase[J]. Nature Reviews Molecular Cell Biology, 2008, 9(6):464-477. [49] PETRY S.Mechanisms of mitotic spindle assembly[J]. Annual Review of Biochemistry, 2016, 85:659-683. [50] MARESCA T J, GROEN A C, GATLIN J C, et al. Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity[J]. Current Biology, 2009, 19(14):1210-1215. [51] MUSACCHIO A.The molecular biology of spindle assembly checkpoint signaling dynamics[J]. Current Biology, 2015, 25(20):R1002-1018. [52] POSS K D, NECHIPORUK A, STRINGER K F, et al. Germ cell aneuploidy in zebrafish with mutations in the mitotic checkpoint gene mps1[J]. Genes & Development, 2004, 18(13):1527-1532. [53] VOGT E, KIRSCH-VOLDERS M, PARRY J, et al. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error[J]. Mutation Research, 2008, 651(1-2):14-29. [54] YANG K T, TANG C J, TANG T K.Possible role of Aurora-C in meiosis[J]. Frontiers in Oncology, 2015, 5:178. [55] GRUSS O J, WITTMANN M, YOKOYAMA H, et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells[J]. Nature Cell Biology, 2002, 4(11):871-879. [56] CHAN P C, HSU R Y, LIU C W, et al. Adducin-1 is essential for mitotic spindle assembly through its interaction with myosin-X[J]. The Journal of Cell Biology, 2014, 204(1):19-28. [57] MIKWAR M, MACFARLANE A J, MARCHETTI F.Mechanisms of oocyte aneuploidy associated with advanced maternal age[J]. Mutation Research, 2020, 785:108320. [58] LARA-GONZALEZ P, WESTHORPE F G, TAYLOR S S.The spindle assembly checkpoint[J]. Current Biology, 2012, 22(22):R966-R980. [59] HUNT P A, HASSOLD T J.Sex matters in meiosis[J]. Science, 2002, 296(5576):2181-2183. [60] TOUATI S A, WASSMANN K.How oocytes try to get it right:Spindle checkpoint control in meiosis[J]. Chromosoma, 2016, 125(2):321-335. [61] LANE S I R, JONES K T.Chromosome biorientation and APC activity remain uncoupled in oocytes with reduced volume[J]. The Journal of Cell Biology, 2017, 216(12):3949-3957. [62] LEMAIRE-ADKINS R, RADKE K, HUNT P A.Lack of checkpoint control at the metaphase/anaphase transition:A mechanism of meiotic nondisjunction in mammalian females[J]. The Journal of Cell Biology, 1997, 139(7):1611-1619. [63] GUI L, HOMER H.Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes[J]. Development, 2012, 139(11):1941-1946. [64] LANE S I, YUN Y, JONES K T.Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension[J]. Development, 2012, 139(11):1947-1955. [65] 张俊玉, 吕珊, 王丽丽, 等.哺乳动物卵母细胞减数分裂纺锤体装配研究进展[J]. 农业生物技术学报, 2018, 26(12):2150-2159. ZHANG J Y, LYU S, WANG L L, et al. Progress in spindle assembly in meiosis of mammalian oocytes[J]. Journal of Agricultural Biotechnology, 2018, 26(12):2150-2159.(in Chinese) [66] HOMER H A, MCDOUGALL A, LEVASSEUR M, et al. Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis Ⅰ mouse oocytes[J]. Reproduction, 2005, 130(6):829-843. [67] WASSMANN K, NIAULT T, MARO B.Metaphase Ⅰ arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes[J]. Current Biology, 2003, 13(18):1596-1608. [68] NIAULT T, HACHED K, SOTILLO R, et al. Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis Ⅰ[J]. PLoS One, 2007, 2(11):e1165. [69] DOBLES M, LIBERAL V, SCOTT M L, et al. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2[J]. Cell, 2000, 101(6):635-645. [70] YIN S, WANG Q, LIU J H, et al. Bub1 prevents chromosome misalignment and precocious anaphase during mouse oocyte meiosis[J]. Cell Cycle, 2006, 5(18):2130-2137. [71] MCGUINNESS B E, ANGER M, KOUZNETSOVA A, et al. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint[J]. Current Biology, 2009, 19(5):369-380. [72] HOMER H, GUI L, CARROLL J.A spindle assembly checkpoint protein functions in prophase Ⅰ arrest and prometaphase progression[J]. Science, 2009, 326(5955):991-994. [73] WEI L, LIANG X W, ZHANG Q H, et al. Bubr1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte[J]. Cell Cycle, 2010, 9(6):1112-1121. [74] BAKER D J, DAWLATY M M, WIJSHAKE T, et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan[J]. Nature Cell Biology, 2013, 15(1):96-102. [75] SIMMONS A J, PARK R, STERLING N A, et al. Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death[J]. Human Molecular Genetics, 2019, 28(11):1822-1836. [76] LAGIRAND-CANTALOUBE J, CIABRINI C, CHARRASSE S, et al. Loss of centromere cohesion in aneuploid human oocytes correlates with decreased kinetochore localization of the sac proteins Bub1 and BubR1[J]. Scientific Reports, 2017, 7:44001. [77] PAN H, MA P, ZHU W, et al. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs[J]. Developmental Biology, 2008, 316(2):397-407. [78] NABTI I, GRIMES R, SARNA H, et al. Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis Ⅱ[J]. Nature Communications, 2017, 8:15346. [79] 张雨, 方玉达.Cohesin结构及功能研究进展[J]. 遗传, 2020, 42(1):57-72. ZHANG Y, FANG Y D.Progresses on the structure and function of Cohesin[J]. Hereditas, 2020, 42(1):57-72.(in Chinese) [80] HUSSIN J, ROY-GAGNON M H, GENDRON R, et al. Age-dependent recombination rates in human pedigrees[J]. PLoS Genetics, 2011, 7(9):e1002251. [81] JESSBERGER R.Age-related aneuploidy through cohesion exhaustion[J]. EMBO Reports, 2012, 13(6):539-546. [82] BLEAZARD T, JU Y S, SUNG J, et al. Fine-scale mapping of meiotic recombination in Asians[J]. BMC Genetics, 2013, 14:19. [83] LEE J.Is age-related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration?[J]. Reproductive Medicine and Biology, 2020, 19(1):32-41. [84] KURAHASHI H, TSUTSUMI M, NISHIYAMA S, et al. Molecular basis of maternal age-related increase in oocyte aneuploidy[J]. Congenital Anomalies, 2012, 52(1):8-15. [85] SAKAKIBARA Y, HASHIMOTO S, NAKAOKA Y, et al. Bivalent separation into univalents precedes age-related meiosis Ⅰ errors in oocytes[J]. Nature Communications, 2015, 6:7550. [86] HODGES C A, REVENKOVA E, JESSBERGER R, et al. SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction[J]. Nature Genetics, 2005, 37(12):1351-1355. [87] BANNISTER L A, REINHOLDT L G, MUNROE R J, et al. Positional cloning and characterization of mouse mei8, a disrupted allelle of the meiotic cohesin Rec8[J]. Genesis, 2004, 40(3):184-194. [88] XU H, BEASLEY M D, WARREN W D, et al. Absence of mouse Rec8 cohesin promotes synapsis of sister chromatids in meiosis[J]. Developmental cell, 2005, 8(6):949-961. [89] WANG Z B, SCHATTEN H, SUN Q Y.Why is chromosome segregation error in oocytes increased with maternal aging?[J]. Physiology (Bethesda), 2011, 26(5):314-325. [90] TSUTSUMI M, FUJIWARA R, NISHIZAWA H, et al. Age-related decrease of meiotic cohesins in human oocytes[J]. PLoS One, 2014, 9(5):e96710. [91] CHIANG T, SCHULTZ R M, LAMPSON M A.Age-dependent susceptibility of chromosome cohesion to premature separase activation in mouse oocytes[J]. Biology of Reproduction, 2011, 85(6):1279-1283. [92] BURKHARDT S, BORSOS M, SZYDLOWSKA A, et al. Chromosome cohesion established by Rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice[J]. Current Biology, 2016, 26(5):678-685. [93] TACHIBANA-KONWALSKI K, GODWIN J, VAN DER WEYDEN L, et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes[J]. Genes & Development, 2010, 24(22):2505-2516. |
[1] | 陈丹丹, 齐雅天, 李俊杰. 卵母细胞玻璃化冷冻保存中凋亡的机制及缓解策略[J]. 中国畜牧兽医, 2025, 52(6): 2729-2735. |
[2] | 高子浩, 李嘉, 张琳惠, 张慈, 刘炳男, 李俊杰, 夏威. 线粒体在家畜卵母细胞成熟过程中的调控机制研究进展[J]. 中国畜牧兽医, 2025, 52(5): 2232-2242. |
[3] | 焦显芹, 马晓, 田润博, 刘颖, 马世杰, 陈红英. 表达猪圆环病毒2d型Cap蛋白的重组猪伪狂犬病病毒的构建[J]. 中国畜牧兽医, 2025, 52(5): 2278-2286. |
[4] | 王林青, 张刘辉, 陈曦艋, 马世杰, 宋月, 陈红英. 猪瘟病毒E2基因部分表位区重组猪伪狂犬病病毒的构建及生物学特性研究[J]. 中国畜牧兽医, 2025, 52(4): 1815-1824. |
[5] | 李燕红, 李鋆涛, 杨天沐, 贾梦言, 熊文广. 基于CRISPR系统的禽源多杀性巴氏杆菌、大肠杆菌检测方法的建立[J]. 中国畜牧兽医, 2025, 52(2): 912-921. |
[6] | 张颖, 唐毓, 杨镒峰, 薛海龙, 许保增. 哺乳动物卵母细胞纺锤体组装机制的研究进展[J]. 中国畜牧兽医, 2025, 52(1): 268-277. |
[7] | 贾文凤, 蒋香香, 陶慧丽, 王安平, 吴植, 朱善元. 一种基于HDR-CRISPR/Cas9技术快速构建重组鸭肠炎病毒的方法的建立[J]. 中国畜牧兽医, 2025, 52(1): 298-309. |
[8] | 于晶雪, 韦珊珊, 覃绍敏, 吴健敏, 杨丽华, 陈凤莲, 许力士, 秦树英, 华俊, 韦珏, 方芳, 刘金凤. 基于CRISPR/Cas12a-RT-RAA的猪繁殖与呼吸综合征病毒快速检测方法的建立[J]. 中国畜牧兽医, 2024, 51(8): 3237-3246. |
[9] | 周鑫鑫, 郭莹莹, 肖运才, 王金硕, 周祖涛, 刘华珍, 石德时. 猪表皮生长因子在乳酸乳球菌中的表达及其生物活性研究[J]. 中国畜牧兽医, 2024, 51(7): 2823-2836. |
[10] | 郑湘民, 王玉琪, 徐冰洁, 孙朝阳, 高青山, 方南洙, 金庆国. 千金藤素对牛体外卵母细胞和早期胚胎抗凋亡能力的影响[J]. 中国畜牧兽医, 2024, 51(7): 2943-2952. |
[11] | 莫显红, 李俊杰, 郭成, 温诏禹, 邹宇柱, 赵文博, 徐振军. 家畜卵母细胞玻璃化冷冻损伤研究进展[J]. 中国畜牧兽医, 2024, 51(6): 2524-2532. |
[12] | 罗安凤, 华再东, 杨彩侠, 陈矾. 核膜孔亚复合物Nup98/Rae1对小鼠卵母细胞体外减数分裂成熟的影响[J]. 中国畜牧兽医, 2024, 51(5): 1998-2006. |
[13] | 向国庆, 孙菁晗, 宋帅, 温肖会, 吕殿红, 贾春玲, 牛瑞辉, 顾有方, 罗胜军. 非洲猪瘟病毒抗体化学发光检测方法的建立与应用[J]. 中国畜牧兽医, 2024, 51(4): 1362-1371. |
[14] | 李有为, 程亚倬, 商继勇, 张廷龙, 孙铭菊. 哺乳动物小卵泡卵母细胞体外成熟的研究进展[J]. 中国畜牧兽医, 2024, 51(3): 1171-1182. |
[15] | 包涛涛, 杨先富, 廖飞, 吴通奎, 莫兴虎, 汪忠荣. RPA检测技术在禽源病原检测中的研究进展[J]. 中国畜牧兽医, 2024, 51(2): 482-490. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||