中国畜牧兽医 ›› 2024, Vol. 51 ›› Issue (2): 659-667.doi: 10.16431/j.cnki.1671-7236.2024.02.022
闫艳霞1,2, 李紫聪1,2, 董亚铮1,2, 李政1,2, 黄思秀1,2
收稿日期:
2023-09-25
出版日期:
2024-02-05
发布日期:
2024-01-29
作者简介:
闫艳霞,E-mail:2393662931@qq.com。
YAN Yanxia1,2, LI Zicong1,2, DONG Yazheng1,2, LI Zheng1,2, HUANG Sixiu1,2
Received:
2023-09-25
Online:
2024-02-05
Published:
2024-01-29
Contact:
广东省乡村振兴战略专项"广东省畜禽地方品种保护与开发利用提升工程"
E-mail:sxhuang815@scau.edu.cn
Supported by:
摘要: 基因修饰技术是一种能精确改造生物基因组,实现外源基因定点整合和基因定点敲除的技术。早期的基因修饰形式主要是转基因,随着科学研究的不断深入,新型基因修饰方法也逐渐研发出来,包括敲除、敲入、定点突变等。根据研究或应用的目的,可以将基因修饰技术分为转基因和基因敲除两方面内容。近年来,随着现代分子技术的高速发展,基因修饰技术不断改进创新,其相关方法和技术已逐步应用于改良家畜性状、研究基因功能、制作动物生物反应器以及构建人类疾病动物模型等领域中,使得畜禽基因功能的研究和转基因育种更加高效,在动物遗传育种以及生物医药等领域取得了显著成就,弥补了传统转基因技术的随机整合、遗传不稳定等缺陷,具有广阔的发展前景。作者从动物转基因和基因敲除技术两方面阐述了基因修饰技术的发展现状及发展趋势,并简要概括了基因修饰技术在动物育种和生物医药领域的应用现状。
中图分类号:
闫艳霞, 李紫聪, 董亚铮, 李政, 黄思秀. 基因修饰技术及其在动物育种和生物医药领域的应用[J]. 中国畜牧兽医, 2024, 51(2): 659-667.
YAN Yanxia, LI Zicong, DONG Yazheng, LI Zheng, HUANG Sixiu. Gene Modification Technology and Its Application in Animal Breeding and Biomedicine[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 659-667.
[1] JAENISCH R,MINTZ B.Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA[J].Proceedings of the National Academy of Sciences of the United States of America,1974,71(4):1250-1254. [2] PALMITER R D,BRINSTER R L,HAMMER R E,et al.Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes[J].Nature,1982,300(5893):611-615. [3] GORDON J W,SCANGOS G A,PLOTKIN D J,et al.Genetic transformation of mouse embryos by microinjection of purified DNA[J].Proceedings of the National Academy of Sciences of the United States of America,1980,77(12):7380-7384. [4] PERRY A C,WAKAYAMA T,KISHIKAWA H,et al.Mammalian transgenesis by intracytoplasmic sperm injection[J].Science,1999,284(5417):1180-1183. [5] LOIS C,HONG E J,PEASE S,et al.Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors[J].Science,2002,295(5556):868-872. [6] HOFMANN A,KESSLER B,EWERLING S,et al.Efficient transgenesis in farm animals by lentiviral vectors[J].EMBO Reports,2003,4(11):1054-1058. [7] SASAKI E,SUEMIZU H,SHIMADA A,et al.Generation of transgenic non-human primates with germline transmission[J].Nature,2009,459(7246):523-527. [8] 靳泽华,谢梦利,易辰阳,等.应用基于重组慢病毒的CRISPR/Cas9技术构建基因突变的鸡DF1细胞[J].华中农业大学学报,2019,38(3):83-88. JIN Z H,XIE M L,YI C Y,et al.Using CRISPR/Cas9 technology to construct chicken DF1 cells with gene mutations[J].Journal of Huazhong Agricultural University,2019,38(3):83-88.(in Chinese) [9] 秦川.揭示基因组功能的强大工具:基因打靶技术--2007年度诺贝尔生理学或医学奖成果简介[J].科技导报,2007,24:30-35. QIN C.Powerful tools to reveal the function of the genome:Gene targeting technology--2007 Nobel prize in physiology or medicine introduction[J].Science and Technology Herald,2007,24:30-35.(in Chinese) [10] THOMAS K R,CAPECCHI M R.Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J].Cell,1987,51(3):503-512. [11] SCHNIEKE A E,MCSHIR J,KIND A J,et al.Viable offspring derived from fetal and adult mammalian cells[J].American Journal of Ophthalmology,1997,124(2):276. [12] DING S,WU X,LI G,et al.Efficient transposition of the PiggyBac (PB) transposon in mammalian cells and mice[J].Cell,2005,122(3):473-483. [13] 谢维欣,武建明,王洪梅,等.转座子在动物转基因研究中的应用[J].家畜生态学报,2011,32(5):87-90. XIE W X,WU J M,WANG H M,et al.Application of transposons in transgenic studies in animals[J].Journal of Domestic Animal Ecology,2011,32(5):87-90.(in Chinese) [14] 高宇,程潜,张梦君,等.基因敲除技术研究进展[J].农业技术与装备,2017,8:19-22. GAO Y,CHENG Q,ZHANG M J,et al.Progress in gene knockout technology[J].Agricultural Technology and Equipment,2017,8:19-22.(in Chinese) [15] 滕艳,杨晓.基因打靶技术:开启遗传学新纪元[J].遗传,2007,11:1291-1298. TENG Y,YANG X.Gene-targeting technology:The opening of a new era in genetics[J].Genetic,2007,11:1291-1298.(in Chinese) [16] 肖安,张博.人工核酸内切酶介导的新一代基因组编辑技术进展[J].生物工程学报,2015,31(6):917-928. XIAO A,ZHANG B.Progress in next-generation genome editing technology mediated by artificial endonucleases[J].Journal of Bioengineering,2015,31(6):917-928.(in Chinese) [17] 陶果,信吉阁,肖晶,等.基因敲除技术最新研究进展及其应用[J].安徽农业科学,2013,41(29):11605-11608. TAO G,XIN J G,XIAO J,et al.Recent research progress and application of gene knockout technology[J].Anhui Agricultural Science,2013,41(29):11605-11608.(in Chinese) [18] 张白雪,孙其信,李海峰.基因修饰技术研究进展[J].生物工程学报,2015,31(8):1162-1174. ZHANG B X,SUN Q X,LI H F.Progress in gene modification technology[J].Journal of Bioengineering,2015,31(8):1162-1174.(in Chinese) [19] BIFFI A.Clinical translation of TALENs:Treating SCID-X1 by gene editing in iPSCs[J].Cell Stem Cell,2015,16(4):348-349. [20] SHIAU C E,KAUFMAN Z,MEIRELES A M,et al.Differential requirement for IRF8 in formation of embryonic and adult macrophages in zebrafish[J].Public Library of Science,2015,10(1):e0117513. [21] GEURTS A M,COST G J,FREYVERT Y,et al.Knockout rats via embryo microinjection of zinc-finger nucleases[J].Science,2009,325(5939):433. [22] 梁浩.锌指核酸酶介导的小鼠MSTN基因敲除的研究[D].呼和浩特:内蒙古大学,2015. LIANG H.Study of zinc-finger nuclease-mediated gene knockout of MSTN in mice[D].Hohhot:Inner Mongolia University,2015.(in Chinese) [23] CHRISTIAN M,CERMAK T,DOYLE E L,et al.Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics (Austin),2010,186(2):757-761. [24] MILLER J C,TAN S,QIAO G,et al.A TALE nuclease architecture for efficient genome editing[J].Nature Biotechnology,2011,29(2):143-148. [25] CHEN Y,LU W,GAO N,et al.Generation of obese rat model by transcription activator-like effector nucleases targeting the leptin receptor gene[J].Science China.Life Sciences,2017,60(2):152-157. [26] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823. [27] KHALILI K,KAMINSKI R,CHEN Y,et al.Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing[J].Scientific Reports,2016,4:6:22555. [28] 呼锐.利用CRISPR/Cas9技术一步生产FGF5基因敲除绵羊的研究[D].北京:中国农业大学,2017. HU R.One-step production of FGF5 gene knockout sheep using CRISPR/Cas9 technology[D].Beijing:China Agricultural University,2017.(in Chinese) [29] YANG H,ZHANG J,ZHANG X,et al.CD163 knockout pigs are fully resistant to highly pathogenic Porcine reproductive and respiratory syndrome virus[J].Antiviral Research,2018,151:63-70. [30] WIDJAYA M A,JU J C,LEE S D.CRISPR-edited stem cell transplantation for HIV-related gene modification in vivo:A systematic review[J].Stem Cell Reviews Reports,2022,18(5):1743-1755. [31] 周维,付喜爱,张德显,等.基因敲除技术的研究进展[J].中国兽医杂志,2015,51(3):67-69. ZHOU W,FU X A,ZHANG D X,et al.Progress in gene knockout technology[J].Chinese Veterinary Journal,2015,51(3):67-69.(in Chinese) [32] XIAO A,WU Y,YANG Z,et al.EENdb:A database and knowledge base of ZFNs and TALENs for endonuclease engineering[J].Nucleic Acids Research,2013,41(Database issue):D415-22. [33] THOMAS K R,FOLGER K R,CAPECCHI M R.High frequency targeting of genes to specific sites in the mammalian genome[J].Cell,1986,44(3):419-428. [34] DOYON Y,MCCAMMON J M,MILLER J C,et al.Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases[J].Nature Biotechnology,2008,26(6):702-708. [35] GOLOVAN S P,MEIDINGER R G,AJAKAIYE A,et al.Pigs expressing salivary phytase produce low-phosphorus manure[J]. Nature Biotechnology,2001,19(8):741-745. [36] CRISPO M,MULET A P,TESSON L,et al.Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J].Public Library of Science,2015,10(8):e0136690. [37] 艾立纷."多莉"实验室育出能抗禽流感的鸡[N].环球时报,2023-10-12(5). AI L F.The"Dolly"laboratory has produced chickens that can fight avian influenza[N].Global Times,2023-10-12(5).(in Chinese) [38] WHITWORTH K M,ROWLAND R R,EWEN C L,et al.Gene-edited pigs are protected from Porcine reproductive and respiratory syndrome virus[J].Nature Biotechnology,2016,34(1):20-22. [39] GAO Y,WU H,WANG Y,et al.Single Cas9 nickase induced generation of NRAMP1 knock in cattle with reduced off-target effects[J]. Genome Biology,2017,18(1):13. [40] RAVENSBERGEN B,PAUWELS E K J,SALAHEDDINE M,et al.Large scale production of recombinant human lactoferrin in the milk of transgenic cows[J].Nature Biotechnology,2002,20(5):484-487. [41] ZHENG Q,LIN J,HUANG J,et al.Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J].Proceedings of the National Academy of Sciences of the United States of America, 2017,114(45):E9474-E9482. [42] PARK T S,PARK J,LEE J H,et al.Disruption of G0/G1 switch gene 2(G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken[J].FASEB Journal,2019,33(1):1188-1198. [43] HU Z,DING W,ZHU D,et al.TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy[J].Journal of Clinical Investigation,2015,125(1):425-436. [44] YIN H,XUE W,ANDERSON D G.CRISPR-Cas9:A tool for cancer research and therapeutics[J]. Nature Reviews,Clinical Oncology,2019,16(5):281-295. [45] SANTINHA A J,KLINGLER E,KUHN M,et al.Transcriptional linkage analysis with in vivo AAV-Perturb-Seq[J].Nature,2023,622(7982):367-375. [46] NO AUTHORS LISTED.Using CRISPR to study gene function aids understanding of 22q11.2 deletion syndrome[J]. Nature,2023.Doi:10.1038/d41586-023-02779-z.Online ahead of print. [47] PEREZ E E,WANG J,MILLER J C,et al.Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases[J].Nature Biotechnology,2008,26(7):808-816. [48] MUSSOLINO C,MORBITZER R,LUTGE F,et al.A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity[J].Nucleic Acids Research,2011,39(21):9283-9293. [49] NIU Y,SHEN B,CUI Y,et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J].Cell,2014,156(4):836-843. [50] CHENG H,ZHANG F,DING Y.CRISPR/Cas9 delivery system engineering for genome editing in therapeutic applications[J].Pharmaceutics,2021,13(10):1649. [51] KOO T,YOON A R,CHO H Y,et al.Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression[J].Nucleic Acids Research,2017,45(13):7897-7908. [52] 胡思慧,刘倩宜,谢冬纯,等.CRISPR/Cas基因编辑技术治疗人类遗传性疾病的临床研究进展[J].生命科学,2022,34(10):1250-1263. HU S H,LIU Q Y,XIE D C,et al.Progress in clinical studies of CRISPR/Cas gene editing technology for the treatment of human genetic diseases[J].Life Sciences,2022,34(10):1250-1263.(in Chinese) [53] 朱佩琪,蒋伟东,周诺.CRISPR/Cas9基因编辑系统的发展及其在医学研究领域的应用[J].中国比较医学杂志,2019,29(2):116-123. ZHU P Q,JIANG W D,ZHOU N.Development of the CRISPR/Cas9 gene editing system and its application in the field of medical research[J].Chinese Journal of Comparative Medicine,2019,29(2):116-123.(in Chinese) [54] PENG J,WANG Y,JIANG J Y,et al.Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Scientific Reports,2015,5:16705. [55] ZENG F,LI Z,ZHU Q,et al.Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors[J].Scientific Reports,2017,7:41270. [56] ZENG F,LIAO S,KUANG Z,et,al.Genetically engineered pigs as efficient salivary gland bioreactors for production of therapeutically valuable human nerve growth factor[J].Cells,2022,11(15):2378. [57] SONG J,ZHONG J,GUO X,et al.Generation of RAG1-and 2-deficient rabbits by embryo microinjection of TALENs[J].Cell Research,2013,23(8):1059-1062. [58] UCHIDA M,SHIMATSU Y,ONOE K,et al.Production of transgenic miniature pigs by pronuclear microinjection[J].Transgenic Research,2001,10(6):577-582. [59] YANG D,WANG C E,ZHAO B,et al.Expression of huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs[J].Human Molecular Genetics,2010,19(20):3983-3994. [60] YAN S,TU Z,LIU Z,et al.A huntingtin knock in pig model recapitulates features of selective neurodegeneration in huneington's disease[J].Cell,2018,173(4):989-1002. |
[1] | 贾纯琰, 孙燕勇, 包永红, 张文广, 杜晨光. 基于转录组学分析受外源褪黑素诱导调控羊绒生长的mRNA和lncRNA的可变剪接[J]. 中国畜牧兽医, 2025, 52(7): 3165-3177. |
[2] | 牛舒冉, 潘剑锋, 戎友俊, 敖晓芳, 王一涵, 尚方正, 王瑞军, 张燕军. 环状RNA在羊重要经济性状中的应用研究[J]. 中国畜牧兽医, 2025, 52(6): 2468-2481. |
[3] | 杨泉, 李晓, 闫尊强, 王鹏飞, 黄晓宇, 高小莉, 杨巧丽, 滚双宝, 杨姣姣. 合作猪CXCL12基因克隆、生物信息学分析及组织表达研究[J]. 中国畜牧兽医, 2025, 52(6): 2482-2493. |
[4] | 任灏, 朱怡轩, 晁婷婷, 王孝义, 鲁绍雄, 杨永立, 陈强, 李明丽. 不同生长速度撒坝猪背最长肌lncRNA筛选与功能预测[J]. 中国畜牧兽医, 2025, 52(6): 2494-2505. |
[5] | 管凇, 施力光, 林雨, 蒋剑箫, 武洪志, 彭维祺. 海南黑山羊GDF9基因nsSNP功能性预测及与产羔数的关联分析[J]. 中国畜牧兽医, 2025, 52(5): 2166-2176. |
[6] | 王盼盼, 沙拉玛提·波代, 巴合提·博代, 李振伟, 吾热力哈孜·哈孜汗. 基于D-loop区多态性分析新疆地区7个哈萨克牛群体遗传结构和母系起源[J]. 中国畜牧兽医, 2025, 52(3): 1166-1179. |
[7] | 张瑶, 朱礼阳, 杨莹, 侯静严, 韩涛泽, 王凯龙, 徐垭烯, 盛熙晖. 畜禽肌肉肌苷酸研究进展[J]. 中国畜牧兽医, 2025, 52(2): 686-697. |
[8] | 杨金林, 李辉, 赵德鹏, 石钰仕, 龙霞, 谭启松. 赤水乌骨鸡EDNRB2基因多态性及其与肤色性状的关联分析[J]. 中国畜牧兽医, 2025, 52(2): 759-770. |
[9] | 胡紫平, 苏艳芳, 宗文成, 牛乃琪, 张龙超, 王源. 基于转录组和基因组数据筛选剑白香猪两头乌毛色的候选基因[J]. 中国畜牧兽医, 2025, 52(1): 13-24. |
[10] | 李超杰, 蒙萌, 李博, 靳光, 王坤, 车雷杰, 乔晓春, 张元庆, 牛晓艳. 利用微卫星标记分析山西3个地方牛群体的遗传多样性和遗传分化[J]. 中国畜牧兽医, 2025, 52(1): 226-237. |
[11] | 赵德鹏, 肖涛, 龙霞, 罗韦, 叶涛, 余欢, 陈友波, 石钰仕, 王文亮, 李辉. 基于TMT定量蛋白质组学技术筛选调控鸡蛋绿壳性状的候选蛋白[J]. 中国畜牧兽医, 2024, 51(12): 5138-5149. |
[12] | 周铂涵, 梅步俊, 吕琦, 王志英, 苏蕊. 机器学习及其在动物遗传育种中的应用研究进展[J]. 中国畜牧兽医, 2024, 51(12): 5348-5358. |
[13] | 赵彦频, 韩勇, 粟朝芝, 龙勇, 肖文, 杨晓玲. 全基因组选择在山羊育种中的应用研究进展[J]. 中国畜牧兽医, 2024, 51(11): 4860-4870. |
[14] | 潘东霞, 王辉, 熊本海, 唐湘方. CRISPR-Cas9基因编辑技术在牛、羊生产中的应用研究进展[J]. 中国畜牧兽医, 2024, 51(11): 4880-4889. |
[15] | 杨佳, 杨钦鸿, 王位, 张永仙, 代红炀, 尹红斌, 李素华. 云南野鸟源H9N2亚型AIV的遗传进化分析[J]. 中国畜牧兽医, 2024, 51(11): 4899-4910. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||