China Animal Husbandry & Veterinary Medicine ›› 2023, Vol. 50 ›› Issue (7): 2966-2973.doi: 10.16431/j.cnki.1671-7236.2023.07.036
• Basic Veterinary Medicine • Previous Articles Next Articles
SHENG Xijing, ZHANG Fan, LIU Fangjia, LIU Quan, CAO Zhengzheng, HU Tianyu, LI Donghua, WU Menghui, DAI Menghong
Received:
2022-12-12
Published:
2023-06-30
CLC Number:
SHENG Xijing, ZHANG Fan, LIU Fangjia, LIU Quan, CAO Zhengzheng, HU Tianyu, LI Donghua, WU Menghui, DAI Menghong. Research Progress on Pathogenicity and Drug Resistance of Klebsiella pneumoniae from Animals[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(7): 2966-2973.
[1] PODSCHUN R, ULLMANN U.Klebsiella spp.as nosocomial pathogens:Epidemiology, taxonomy, typing methods, and pathogenicity factors[J].Clinical Microbiology Reviews, 1998, 11(4):589-603. [2] CHENG F, LI Z, LAN S, et al.Characterization of Klebsiella pneumoniae associated with cattle infections in Southwest China using multi-locus sequence typing (MLST), antibiotic resistance and virulence-associated gene profile analysis[J].Brazilian Journal of Microbiology, 2018, 49(Suppl 1):93-100. [3] GUO Y, ZHOU H, QIN L, et al.Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples[J].PLoS One, 2016, 11(4):e0153561. [4] 王雅丽, 张宝锁, 张雯, 等.鸡源肺炎克雷伯菌的分离鉴定和耐药性分析[J].中国兽药杂志, 2022, 56(11):1-9. WANG Y L, ZHANG B S, ZHANG W, et al.Isolation, identification and drug resistance analysis of Klebsiella pneumoniae from chickens[J]. Chinese Journal of Veterinary Drug, 2022, 56(11):1-9.(in Chinese) [5] CHENG J, ZHANG J, HAN B, et al. Klebsiella pneumoniae isolated from bovine mastitis is cytopathogenic for bovine mammary epithelial cells[J].Journal of Dairy Science, 2020, 103(4):3493-3504. [6] KOMATSU T, YOSHIDA E, SHIGENAGA A, et al.Fatal suppurative meningoencephalitis caused by Klebsiella pneumoniae in two calves[J].Journal of Veterinary Medical Science, 2021, 83(7):1113-1119. [7] 王哲红, 吴桐忠, 赵玉宾, 等.石河子地区某规模化奶牛场肺炎克雷伯菌的分离鉴定及耐药性分析[J].中国畜牧兽医, 2021, 48(9):3464-3472. WANG Z H, WU T Z, ZHAO Y B, et al.Isolation, identification and drug resistance analysis of Klebsiella pneumoniae in a large-scale dairy farm in Shihezi area[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(9):3464-3472.(in Chinese) [8] 张凯川, 王晋宇, 李守军, 等.广东省羊源肺炎克雷伯菌遗传进化与毒力基因及耐药性分析[J].畜牧兽医学报, 2023, 54(1):328-337. ZHANG K C, WANG J Y, LI S J, et al.Isolation, identification and biological characteristics of Klebsiella pneumoniae from sheep in Guangdong province[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1):328-337.(in Chinese) [9] ESTELL K E, YOUNG A, KOZIKOWSKI T, et al.Pneumonia caused by Klebsiella spp.in 46 horses[J].Journal of Veterinary Internal Medicine, 2016, 30(1):314-321. [10] BOWRING B G, FAHY V A, MORRIS A, et al.An unusual culprit:Klebsiella pneumoniae causing septicaemia outbreaks in neonatal pigs?[J].Veterinary Microbiology, 2017, 203:267-270. [11] BMJ PUBLISHING GROUP LIMITED.Klebsiella pneumoniae infection causes mastitis in pigs[J].Veterinary Record, 2014, 175(24):617-620. [12] 张自强, 王佳佳, 任玉莹, 等.兔源支气管败血波氏杆菌和肺炎克雷伯菌的分离鉴定及其对抗菌药物的敏感性分析[J].畜牧兽医学报, 2021, 52(8):2254-2264. ZHANG Z Q, WANG J J, REN Y Y, et al.Isolation and identification of rabbit-derived Bordetella bronchiseptica and Klebsiella pneumoniae and their antimicrobial susceptibility analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8):2254-2264.(in Chinese) [13] 李敏, 苏小艳, 李学英, 等.大熊猫源肺炎克雷伯菌生物学特性[J].微生物学通报, 2022, 49(12):5206-5221. LI M, SU X Y, LI X Y, et al.Isolation, identification, and biological characterization of Klebsiella pneumoniae from Ailuropoda melanoleuca[J]. Microbiology China, 2022, 49(12):5206-5221.(in Chinese) [14] TWENHAFEL N A, WHITEHOUSE C A, STEVENS E L, et al.Multisystemic abscesses in African green monkeys (Chlorocebus aethiops) with invasive Klebsiella pneumoniae identification of the hypermucoviscosity phenotype[J].Veterinary Pathology, 2008, 45(2):226-231. [15] MICHAEL S A, HAYMAN D T S, GRAY R, et al.Clinical parameters of hypervirulent Klebsiella pneumoniae disease and ivermectin treatment in New Zealand sea lion (Phocarctos hookeri) pups[J].PLoS One, 2022, 17(3):e0264582. [16] 陈强, 程悦宁, 冯秋菊, 等.水貂肺炎克雷伯菌的分离鉴定及耐药性分析[J].中国畜牧兽医, 2022, 49(2):700-708. CHEN Q, CHENG Y N, FENG Q J, et al.Isolation, identification and drug resistance analysis of Klebsiella pneumoniae from minks[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(2):700-708.(in Chinese) [17] 韩坤, 孟祥玉, 白雪, 等.狐狸源肺炎克雷伯菌的分离鉴定及毒力检测[J].中国兽医学报, 2019, 39(4):722-727. HAN K, MENG X Y, BAI X, et al.Isolation, identification and virulence factors detection of Klebsiella pneumoniae isolated from fox[J]. Chinese Journal of Veterinary Science, 2019, 39(4):722-727.(in Chinese) [18] RUSSO T A, OLSON R, FANG C T, et al.Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K.pneumoniae[J].Journal of Clinical Microbiology, 2018, 56(9):e00776-18. [19] PACZOSA M K, MECSAS J. Klebsiella pneumoniae:Going on the offense with a strong defense[J].Microbiology and Molecular Biology Reviews, 2016, 80(3):629-661. [20] BRISSE S, PASSET V, HAUGAARD A B, et al.wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains[J].Journal of Clinical Microbiology, 2013, 51(12):4073-4078. [21] FOLLADOR R, HEINZ E, WYRES K L, et al.The diversity of Klebsiella pneumoniae surface polysaccharides[J].Microbial Genomics, 2016, 2(8):e000073. [22] MERINO S, CAMPRUBÍ S, ALBERTÍ S, et al.Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing[J].Infection and Immunity, 1992, 60(6):2529-2535. [23] KIDD T J, MILLS G, SÁ-PESSOA J, et al.A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence[J].EMBO Molecular Medicine, 2017, 9(4):430-447. [24] ROSEN D A, HILLIARD J K, TIEMANN K M, et al.Klebsiella pneumoniae FimK promotes virulence in murine pneumonia[J].The Journal of Infectious Diseases, 2016, 213(4):649-658. [25] SCHROLL C, BARKEN K B, KROGFELT K A, et al.Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation[J].BMC Microbiology, 2010, 10:179. [26] RUSSO T A, OLSON R, MACDONALD U, et al.Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae[J].Infection and Immunity, 2014, 82(6):2356-2367. [27] BACHMAN M A, OYLER J E, BURNS S H, et al.Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2[J].Infection and Immunity, 2011, 79(8):3309-3316. [28] CHOU H C, LEE C Z, MA L C, et al.Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection[J].Infection and Immunity, 2004, 72(7):3783-3792. [29] BIALEK-DAVENET S, LAVIGNE J P, GUYOT K, et al.Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae[J].Journal of Antimicrobial Chemotherapy, 2015, 70(1):81-88. [30] HAYATI M, INDRAWATI A, MAYASARI N, et al.Molecular detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates of chicken origin from East Java, Indonesia[J].Veterinary World, 2019, 12(4):578-583. [31] YANG F, DENG B, LIAO W, et al.High rate of multiresistant Klebsiella pneumoniae from human and animal origin[J].Infection and Drug Resistance, 2019, 12:2729-2737. [32] 宗辉, 孙钰芳, 陈思敏, 等.β-内酰胺酶抑制剂复方制剂研究进展[J].中国新药杂志, 2022, 31(4):343-351. ZONG H, SUN Y F, CHEN S M, et al.An update on the combinations with β-lactamase inhibitors[J]. Chinese Journal of New Drugs, 2022, 31(4):343-351.(in Chinese) [33] SUKMAWINATA E, UEMURA R, SATO W, et al.Multidrug-resistant ESBL/AmpC-producing Klebsiella pneumoniae isolated from healthy thoroughbred racehorses in Japan[J].Animals, 2020, 10(3):369. [34] GARCÍA-COBOS S, KÖCK R, MELLMANN A, et al.Molecular typing of Enterobacteriaceae from pig holdings in North-Western Germany reveals extended-spectrum and AmpC β-lactamases producing but no carbapenem resistant ones[J].PLoS One, 2015, 10(7):e0134533. [35] UR RAHMAN S, ALI T, ALI I, et al.The growing genetic and functional diversity of extended spectrum beta-lactamases[J].BioMed Research International, 2018, 2018:9519718. [36] DRAWZ S M, BONOMO R A.Three decades of beta-lactamase inhibitors[J].Clinical Microbiology Reviews, 2010, 23(1):160-201. [37] JACOBY G A.AmpC β-lactamases[J].Clinical Microbiology Reviews, 2009, 22(1):161-182. [38] VÁSQUEZ-PONCE F, DANTAS K, BECERRA J, et al.Detecting KPC-2 and NDM-1 coexpression in Klebsiella pneumoniae complex from human and animal hosts in South America[J].Microbiology Spectrum, 2022, 10(5):e0115922. [39] WANG Q, LEI C, CHENG H, et al.Widespread dissemination of plasmid-mediated tigecycline resistance gene tet(X4) in enterobacterales of porcine origin[J].Microbiology Spectrum, 2022, 10(5):e0161522. [40] PULSS S, STOLLE I, STAMM I, et al.Multispecies and clonal dissemination of OXA-48 carbapenemase in Enterobacteriaceae from companion animals in Germany, 2009-2016[J]. Frontiers in Microbiology, 2018, 9:1265. [41] YANG C, HAN J, BERGLUND B, et al.Dissemination of blaNDM-5 and mcr-8.1 in carbapenem-resistant Klebsiella pneumoniae and Klebsiella quasipneumoniae in an animal breeding area in Eastern China[J].Frontiers in Microbiology, 2022, 13:1030490. [42] LIU Y Y, WANG Y, WALSH T R, et al.Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:A microbiological and molecular biological study[J].The Lancet Infectious Diseases, 2016, 16(2):161-168. [43] KIEFFER N, POIREL L, NORDMANN P, et al.Emergence of colistin resistance in Klebsiella pneumoniae from veterinary medicine[J].Journal of Antimicrobial Chemotherapy, 2015, 70(4):1265-1267. [44] VALIAKOS G, KAPNA I.Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective.A systematic review[J].Veterinary Sciences, 2021, 8(11):265. [45] WANG X, WANG Y, ZHOU Y, et al.Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae[J].Emerging Microbes & Infections, 2018, 7(1):122. [46] WU B, WANG Y, LING Z, et al.Heterogeneity and diversity of mcr-8 genetic context in chicken-associated Klebsiella pneumoniae[J].Antimicrobial Agents and Chemotherapy, 2020, 65(1):e01872-20. [47] RAMIREZ M S, TOLMASKY M E.Aminoglycoside modifying enzymes[J].Drug Resistance Updates, 2010, 13(6):151-171. [48] YANG Y, ZHANG A, LEI C, et al.Characteristics of plasmids coharboring 16S rRNA methylases, CTX-M, and virulence factors in Escherichia coli and Klebsiella pneumoniae isolates from chickens in China[J].Foodborne Pathogens and Disease, 2015, 12(11):873-880. [49] OSEI SEKYERE J, RETA M A.Genomic and resistance epidemiology of Gram-negative bacteria in Africa:A systematic review and phylogenomic analyses from a one health perspective[J].mSystems, 2020, 5(6):e00897-20. [50] WILSON D N.Ribosome-targeting antibiotics and mechanisms of bacterial resistance[J].Nature Reviews Microbiology, 2014, 12(1):35-48. [51] HE T, WANG R, LIU D, et al.Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans[J]. Nature Microbiology, 2019, 4(9):1450-1456. [52] LI X Z, PLÉSIAT P, NIKAIDO H.The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria[J].Clinical Microbiology Reviews, 2015, 28(2):337-418. [53] LI J, ZHANG H, NING J, et al.The nature and epidemiology of OqxAB, a multidrug efflux pump[J].Antimicrobial Resistance & Infection Control, 2019, 8(1):44. [54] LV L, WAN M, WANG C, et al.Emergence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae[J]. mBio, 2020, 11(2):e02930-19. [55] PENG K, WANG Q, YIN Y, et al.Plasmids shape the current prevalence of tmexCD1-toprJ1 among Klebsiella pneumoniae in food production chains[J].mSystems, 2021, 6(5):e00702-21. [56] CHIU S K, HUANG L Y, CHEN H, et al.Roles of ramR and tet(A) mutations in conferring tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae clinical isolates[J].Antimicrobial Agents and Chemotherapy, 2017, 61(8):e00391-17. [57] MOORE I F, HUGHES D W, WRIGHT G D.Tigecycline is modified by the flavin-dependent monooxygenase TetX[J].Biochemistry, 2005, 44(35):11829-11835. [58] SOLIMAN A M, RAMADAN H, ZARAD H, et al.Coproduction of Tet(X7) conferring high-level tigecycline resistance, fosfomycin FosA4, and colistin Mcr-1.1 in Escherichia coli strains from chickens in Egypt[J].Antimicrobial Agents and Chemotherapy, 2021, 65(6):e02084-20. [59] BHARDWAJ K, SHENOY M S, BALIGA S, et al.Research note:Characterization of antibiotic resistant phenotypes and linked genes of Escherichia coli and Klebsiella pneumoniae from healthy broiler chickens, Karnataka, India[J].Poultry Science, 2021, 100(6):101094. [60] REDGRAVE L S, SUTTON S B, WEBBER M A, et al.Fluoroquinolone resistance:Mechanisms, impact on bacteria, and role in evolutionary success[J].Trends in Microbiology, 2014, 22(8):438-445. [61] JANECKO N, HALOVA D, JAMBOROVA I, et al.Occurrence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella spp.recovered from Corvus brachyrhynchos and Corvus corax roosting in Canada[J].Letters in Applied Microbiology, 2018, 67(2):130-135. [62] 朱利霞, 王洪彬, 赵希艳, 等.肺炎克雷伯菌研究进展[J].黑龙江畜牧兽医, 2019, 13:42-45. ZHU L X, WANG H B, ZHAO X Y, et al.Research progress on Klebsiella pneumoniae[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019, 13:42-45.(in Chinese) [63] HESSE S, MALACHOWA N, PORTER A R, et al.Bacteriophage treatment rescues mice infected with multidrug-resistant Klebsiella pneumoniae ST258[J].mBio, 2021, 12(1):e00034-21. [64] 谢成运, 程璐, 张娟, 等.20味中药水提液对奶牛乳房炎主要致病菌体外抑菌效果筛选[J].动物医学进展, 2021, 42(11):65-68. XIE C Y, CHENG L, ZHANG J, et al.Antibacterial effects in vitro of 20 traditional Chinese herb water extracts on main pathogenic[J]. Progress in Veterinary Medicine, 2021, 42(11):65-68.(in Chinese) |
[1] | LU Chong, WANG Yuyan, FU Han, LI Tongyang, MIAO Ronghao, LU Yabin, LI Jianlong, LIU Jianhua, GUO Qingyong, MAI Zhanhai, KUANG Ling. Isolation and Identification of the Main Pathogenic Bacteria of Aborted Yili Foals and Their Pathogenicity [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3344-3358. |
[2] | LI Qiong, HU Ziwei, JIN Gangzhu, CHEN Zheng, LIU Weicheng, HAN Shengyi, XU Chunyan. Study on the Transmission Characteristics and Fitness Cost of blaCTX-M-123 Gene in Pathogenic Escherichia coli from Swine [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2884-2892. |
[3] | QUAN Chenyu, ZHOU Yingning, PU Chanjuan, CHEN Tingting, XU Xinting, LU Bingxia, XU Yilan, ZHAO Shuo, YANG Xunye, DUAN Qunpeng, QIN Yibin, LI Bin, CHEN Zhongwei, HE Ying. Isolation,Identification and Drug Resistance Analysis of Streptococcus agalactiae from Tilapia in Guangxi [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2893-2903. |
[4] | ZHANG Yuying, XING Jiabao, ZHANG Yichao, ZHANG Hang, ZHANG Junkai, ZHAI Yajun, ZHAO Jinxin, WU Hua. Research Progress on Phage Against Klebsiella pneumoniae Infection and Clinical Application [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2955-2964. |
[5] | YU Kun, ZHAO Jie, MA Qin, SHI Yanhong, ZHANG Xiao, LIU Zihan, ZHANG Xinting, WANG Jianhua, LI Yufeng. Isolation,Identification,Drug Resistance and Pathogenicity Analysis of Salmonella Enteritidis from Commercial Meat Ducks [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2353-2363. |
[6] | LONG Baoqin, WANG Huixiang, YU Linjin, HAERLEHA·Amantai, CHEN Haoran, XU Mengjiao, SHI Longxing, LI Youwen. Isolation,Identification and Biological Characteristics Analysis of Two Strains of Klebsiella pneumoniae from Quail [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2364-2378. |
[7] | WU Jiaxin, SUN Yue, MAO Wei, LIU Shuying, YIN Kaiwen, ZHANG Zhidan, HAN Kaifan, ZHAO Hongxia. Isolation and Identification of Mannheimia haemolytica from Sheep Respiratory Tract and Its Pathogenicity and Drug Resistance [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2421-2431. |
[8] | CHEN Zuoxin, CHEN Yuxin, PAN Yanlin, HUANG Yunzhen, LI Linlin, DONG Jiawen, XIANG Yong, XU Zhihong, SUN Minhua, ZHANG Junqin, HUANG Shujian, LIAO Ming. Isolation,Identification and Pathogenicity of Two Strains of Cluster 3 Goose Tembusu Virus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1750-1762. |
[9] | LIN Bingbing, ZHAO Hongzhe, GUAN Na, WU Rigumula, QI Gen, ZHANG Yang, WEN Yongjun, WANG Fengxue. Isolation,Identification and Drug Resistance Analysis of Clostridium perfringens from Cattle in Some Areas of Inner Mongolia [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1873-1883. |
[10] | XING Guofeng, DANG Yifan, ZHAO Yao, SU Fanfan, WU Zihao, LI Tao. Inhibition of CFCS of Lactobacillus salivarius on Hemolytic Activity of Staphylococcus aureus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1884-1894. |
[11] | HE Yuxuan, CIRING Zhuoma, WANG Yu, LIU Huaizhi, YANG Jinpeng, WEI Mingbang, SHANG Peng. Isolation and Identification of Tibetan Pig-derived Enterococcus faecalis and Detection of Drug Resistance and Virulence Genes [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1895-1904. |
[12] | RU Mengke, LI Suixiang, WU Xueqin, YAN Yuzhang, WANG Lu, CHENG Haipeng. Whole Genome Sequencing and Bioinformatics Analysis of a Strain of Proteus mirabilis Isolated from Chicken [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 977-989. |
[13] | MAO Fuchao, ZHAI Chongkai, TIAN Wenjing, WANG Conghui, SONG Minjie, WANG Yingxian, ZHANG Hewei. An Updated Review of Porcine Deltacoronavirus in Terms of Infection and Anti-infection Research [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1281-1291. |
[14] | GAO Jiaojiao, ZHENG Nan, SHAO Wei, CHEN He, MA Xianlan, ZHAO Yankun. Isolation and Identification of Lactogenic Streptococcus agalactiae and Characterisation of Drug Resistance and Virulence and Genome Analysis [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1301-1316. |
[15] | LI Na, LIU Chongyang, ZHANG Jingjing, MALIYA Qiqige, ZHU Na, LU Bin, HAI Ying. Isolation,Identification and Drug Resistance Analysis of a Sheep-derived Strain of Clostridium perfringens Type D [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1352-1359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||