China Animal Husbandry & Veterinary Medicine ›› 2026, Vol. 53 ›› Issue (2): 521-531.doi: 10.16431/j.cnki.1671-7236.2026.02.001
• Review • Previous Articles Next Articles
LI Kang(
), CHEN Siying, SUN Yawen, LENG Xuan, WANG Dong(
), PANG Yunwei(
)
Revised:2025-09-17
Online:2026-02-20
Published:2026-01-28
Contact:
WANG Dong, PANG Yunwei
E-mail:l2311123076@163.com;dwangcn2002@vip.sina.com;pangyunwei@caas.cn
CLC Number:
LI Kang, CHEN Siying, SUN Yawen, LENG Xuan, WANG Dong, PANG Yunwei. Application Advance and Optimization Strategies in Cryoprotectant Agents for Vitrification of Livestock Oocytes[J]. China Animal Husbandry & Veterinary Medicine, 2026, 53(2): 521-531.
Table 1
Application of small-molecule permeable cryoprotectants for oocyte vitrification in livestock species"
小分子渗透调节剂 Small-molecule permeable cryoprotectants | 物种 Species | 冷冻阶段 Freezing stage | 处理方式Treatments | 评价指标 Evaluation indicators | 冷冻对照组 Frozen control group | 冷冻处理组 Frozen treatment group | 参考文献 References |
|---|---|---|---|---|---|---|---|
| 甘氨酸 Glycine | 猪 | GV | IVF | 囊胚率 | 2.5% | 11.0% | Tang等[ |
| 单峰骆驼 | GV | IVF | 囊胚率 | 12.0% | 18.5% | Yaqout等[ | |
| 绵羊 | GV | IVF | 囊胚率 | 6.2% | 10.4% | Ahmadi等[ | |
| 脯氨酸 Proline | 猪 | GV | PA | 囊胚率 | 5.4% | 13.5% | 孙雅雯[ |
| 谷氨酰胺 Glutamine | 牛 | GV | — | 细胞核成熟率 | 17.4% | 32.8% | Yamada等[ |
Table 2
Application of lipid modulators for oocyte vitrification in livestock species"
脂质调节剂 Lipid modulators | 物种 Species | 冷冻阶段 Freezing stage | 处理方式Treatments | 评价指标 Evaluation indicators | 冷冻对照组 Frozen control group | 冷冻处理组 Frozen treatment group | 参考文献 References |
|---|---|---|---|---|---|---|---|
毛喉素 Forskolin | 猪 | MⅡ | PA | 存活率 | 51.7% | 65.3% | Fu等[ |
| 牛 | GV | IVF | 囊胚率 | 10.8% | 31.7% | Ezoe等[ | |
反式10,顺式共轭亚油酸 Trans-10, cis-12 conjugated linoleic acid | 牛 | MⅡ | IVF | 存活率 | 71.7% | 80.4% | Matos等[ |
| L-肉碱 L-carnitine | 牛 | MⅡ | IVF | 囊胚率 | 20.2% | 34.4% | Chankitisakul 等[ |
β-烟酰胺 β-nicotinamide mononucleotide | 牛 | MⅡ | IVF | 囊胚率 | 15.4% | 33.75% | Xu等[ |
| 草虫素 Cordycepin | 牛 | MⅡ | IVF | 囊胚率 | 13.2% | 23.6% | Xu等[ |
| 小檗碱 Berberine | 牛 | MⅡ | IVF | 囊胚率 | 12.5% | 25.0% | Xu等[ |
Table 3
Application of antioxidants for oocyte vitrification in livestock species"
抗氧化剂 Antioxidants | 物种 Species | 冷冻阶段 Freezing stage | 处理方式Treatments | 评价指标 Evaluation indicators | 冷冻对照组 Frozen control group | 冷冻处理组 Frozen treatment group | 参考文献 References |
|---|---|---|---|---|---|---|---|
白藜芦醇 Resveratrol | 牛 | MⅡ | IVF | 卵裂率 | 26.7% | 40.5% | Gutierrez-Castillo等[ |
| 牛 | GV | IVF | 囊胚率 | 15.8% | 33.3% | Zhang等[ | |
| 猪 | GV | PA | 存活率 | 60.6% | 77.3% | Ito等[ | |
| 猪 | GV | PA | 囊胚率 | 21.2% | 32.6% | Santos等[ | |
褪黑素 Melatonin | 猪 | GV | IVF | 囊胚率 | 2.5% | 14.2% | Tang等[ |
虾青素 Astaxanthin | 猪 | GV | PA | 囊胚率 | 14.1% | 21.3% | Xiang等[ |
辅酶Q10 Coenzyme Q10 | 牛 | GV | — | 存活率 | 57.9% | 77.2% | Ruiz-Conca 等[ |
槲皮素 Quercetin | 绵羊 | GV | IVF | 囊胚率 | 7.0% | 25.0% | Davoodian 等[ |
Table 4
Application of cytoskeleton stabilizers for oocyte vitrification in livestock species"
细胞骨架稳定剂 Cytoskeleton stabilizers | 物种 Species | 冷冻阶段 Freezing stage | 处理方式 Treatments | 评价指标 Evaluation indicators | 冷冻对照组 Frozen control group | 冷冻处理组 Frozen treatment group | 参考文献 References |
|---|---|---|---|---|---|---|---|
紫杉醇 Paclitaxel | 牛 | MⅡ | IVF | 卵裂率 | 34.0% | 41.9% | Morató等[ |
| 猪 | MⅡ | — | 存活率 | 54.6% | 60.67% | Fu等[ | |
| 猪 | MⅡ | PA | 卵裂率 | 5.6% | 24.3% | Shi等[ | |
| 猪 | MⅡ | PA | 囊胚率 | 8.3% | 18.6% | Ogawa等[ | |
多西他赛 Docetaxel | 牛 | MⅡ | IVF | 囊胚率 | 27.3% | 39.3% | Pitchayapipatkul 等[ |
细胞松弛素B Cytochalasin B | 猪 | MⅡ | — | 存活率 | 35.1% | 44.2% | Hwang等[ |
| [1] | WHITTINGHAM D G. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at ―196 degrees C[J]. Journal of Reproduction and Fertility, 1977, 49(1): 89-94. |
| [2] | RALL W F, FAHY G M. Ice-free cryopreservation of mouse embryos at ―196 degrees C by vitrification[J]. Nature, 1985, 313(6003): 573-575. |
| [3] | PEREIRA R M, MARQUES C C. Animal oocyte and embryo cryopreservation[J]. Cell and Tissue Banking, 2008, 9(4): 267-277. |
| [4] | LOMBA L, GARCÍA C B, BENITO L, et al. Advances in cryopreservatives: Exploring safer alternatives[J]. ACS Biomaterials Science and Engineering, 2024, 10(1): 178-190. |
| [5] | BEST B P. Cryoprotectant toxicity: Facts, issues, and questions[J]. Rejuvenation Research, 2015, 18(5): 422-436. |
| [6] | WARNER R M, BROWN K S, BENSON J D, et al. Multiple cryoprotectant toxicity model for vitrification solution optimization[J]. Cryobiology, 2022, 108: 1-9. |
| [7] | OLVER D J, HERES P, PAREDES E, et al. Rational synthesis of total damage during cryoprotectant equilibration: Modelling and experimental validation of osmomechanical, temperature, and cytotoxic damage in sea urchin (Paracentrotus lividus) oocytes[J]. PeerJ, 2023, 11: e15539. |
| [8] | SCIORIO R, MANNA C, FAUQUE P, et al. Can cryopreservation in assisted reproductive technology (ART) induce epigenetic changes to gametes and embryos?[J]. Journal of Clinical Medicine, 2023, 12(13): 4444. |
| [9] | NACCACHE P, SHA’AFI R I. Patterns of nonelectrolyte permeability in human red blood cell membrane[J]. Journal of General Physiology, 1973, 62(6): 714-736. |
| [10] | WHALEY D, DAMYAR K, WITEK R P, et al. Cryopreservation: An overview of principles and cell-specific considerations[J]. Cell Transplantation, 2021, 30: 963689721999617. |
| [11] | WESTH P. Preferential interaction of dimethyl sulfoxide and phosphatidyl choline membranes[J]. Biochimica et Biophysica Acta, 2004, 1664(2): 217-223. |
| [12] | SALIM A S. Role of oxygen-derived free radical scavengers in the treatment of recurrent pain produced by chronic pancreatitis. A new approach[J]. Archives of Surgery, 1991, 126(9): 1109-1114. |
| [13] | SANMARTÍN-SUÁREZ C, SOTO-OTERO R, SÁNCHEZ-SELLERO I, et al. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants[J]. Journal of Pharmacological and Toxicological Methods, 2011, 63(2): 209-215. |
| [14] | LI X, WANG Y K, SONG Z Q, et al. Dimethyl sulfoxide perturbs cell cycle progression and spindle organization in porcine meiotic oocytes[J]. PLoS One, 2016, 11(6): e0158074. |
| [15] | CHENG H, HAN Y, ZHANG J, et al. Effects of dimethyl sulfoxide (DMSO) on DNA methylation and histone modification in parthenogenetically activated porcine embryos[J]. Reproduction, Fertility and Development, 2022, 34(8): 598-607. |
| [16] | GUPTA M K, UHM S J, LEE H T. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization[J]. Fertility and Sterility, 2010, 93(8): 2602-2607. |
| [17] | WILLIAMSON J R, CHANG K, FRANGOS M, et al. Hyperglycemic pseudohypoxia and diabetic complications[J]. Diabetes, 1993, 42(6): 801-813. |
| [18] | CHANG C C, SHAPIRO D B, NAGY Z P. The effects of vitrification on oocyte quality[J]. Biology of Reproduction, 2022, 106(2): 316-327. |
| [19] | AGUAYO-CERÓN K A, SÁNCHEZ-MUÑOZ F, GUTIERREZ-ROJAS R A, et al. Glycine: The smallest anti-inflammatory micronutrient[J]. International Journal of Molecular Sciences, 2023, 24(14): 11236. |
| [20] | ZHANG L, XUE X, YAN J, et al. Cryobiological characteristics of L-proline in mammalian oocyte cryopreservation[J]. Chinese Medical Journal, 2016, 129(16): 1963-1968. |
| [21] | YAMADA C, FEITOSA W B, SIMÕES R, et al. Vitrification with glutamine improves maturation rate of vitrified/warmed immature bovine oocytes[J]. Reproduction in Domestic Animals, 2011, 46(1): 173-176. |
| [22] | KHALID M, REHMAN H M, AHMED N, et al. Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops[J]. International Journal of Molecular Sciences, 2022, 23(21): 12913. |
| [23] | ZANDER-FOX D, CASHMAN K S, LANE M. The presence of 1 mm glycine in vitrification solutions protects oocyte mitochondrial homeostasis and improves blastocyst development[J]. Journal of Assisted Reproduction and Genetics, 2013, 30(1): 107-116. |
| [24] | TANG Y, ZHANG Y, LIU L, et al. Glycine and melatonin improve preimplantation development of porcine oocytes vitrified at the germinal vesicle stage[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 856486. |
| [25] | 唐毓, 张颖, 杨镒峰, 等. 甘氨酸提高水貂卵母细胞玻璃化冷冻保存效率的关键机制[J]. 畜牧兽医学报, 2025, 56(7): 3265-3277. |
| TANG Y, ZHANG Y, YANG Y F, et al. Mechanisms of glycine improving vitrification cryopreservation efficiency of mink oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3265-3277. (in Chinese) | |
| [26] | CAO X Y, ROSE J, WANG S Y, et al. Glycine increases preimplantation development of mouse oocytes following vitrification at the germinal vesicle stage[J]. Scientific Reports, 2016, 6: 37262. |
| [27] | YAQOUT K A, BARD M R, EL-WISHY A B A, et al. Influences of glycine supplementation during vitrification on the developmental potential of vitrified/warmed immature dromedary camel oocytes[J]. Reproduction in Domestic Animals, 2023, 58(5): 614-621. |
| [28] | AHMADI E, SHIRAZI A, SHAMS-ESFANDABADI N, et al. Antioxidants and glycine can improve the developmental competence of vitrified/warmed ovine immature oocytes[J]. Reproduction in Domestic Animals, 2019, 54(3): 595-603. |
| [29] | MARSICO T V, DE CAMARGO J, VALENTE R S, et al. Embryo competence and cryosurvival: Molecular and cellular features[J]. Animal Reproduction, 2019, 16(3): 423-439. |
| [30] | KOŠTÁL V, KORBELOVÁ J, POUPARDIN R, et al. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of drosophila melanogaster[J]. Journal of Experimental Biology, 2016, 219(15): 2358-2367. |
| [31] | ZHANG L, XUE X, YAN J, et al. L-proline: A highly effective cryoprotectant for mouse oocyte vitrification[J]. Scientific Reports, 2016, 6: 26326. |
| [32] | LI Y, SI W, ZHANG X, et al. Effect of amino acids on cryopreservation of cynomolgus monkey (Macaca fascicularis) sperm[J]. American Journal of Primatology, 2003, 59(4): 159-165. |
| [33] | 孙雅雯. L-脯氨酸在猪卵母细胞玻璃化冷冻保存中的应用研究[D]. 北京: 中国农业科学院, 2024. |
| SUN Y W. Study on the application of L-proline in vitrification of porcine oocytes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024. (in Chinese) | |
| [34] | LEAL G R, OLIVEIRA T A, DE PAULA GUIMARÃES M P, et al. Lipid modulation during IVM increases the metabolism and improves the cryosurvival of cat oocytes[J]. Theriogenology, 2024, 214: 33-42. |
| [35] | ZOLINI A M, CARRASCAL-TRIANA E, RUIZ DE KING A, et al. Effect of addition of L-carnitine to media for oocyte maturation and embryo culture on development and cryotolerance of bovine embryos produced in vitro [J]. Theriogenology, 2019, 133: 135-143. |
| [36] | XU X, YANG B, ZHANG H, et al. Effects of β-nicotinamide mononucleotide, berberine, and cordycepin on lipid droplet content and developmental ability of vitrified bovine oocytes[J]. Antioxidants, 2023, 12(5): 991. |
| [37] | RAMOS LEAL G, SANTOS MONTEIRO C A, SOUZA-FABJAN J M G, et al. Role of camp modulator supplementations during oocyte in vitro maturation in domestic animals[J]. Animal Reproduction Science, 2018, 199: 1-14. |
| [38] | FU X W, WU G Q, LI J J, et al. Positive effects of forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes[J]. Theriogenology, 2011, 75(2): 268-275. |
| [39] | KIM J Y, KINOSHITA M, OHNISHI M, et al. Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes[J]. Reproduction, 2001, 122(1): 131-138. |
| [40] | DIAS L R O, LEME L O, SPRICIGO J F W, et al. Effect of delipidant agents during in vitro culture on the development, lipid content, gene expression and cryotolerance of bovine embryos[J]. Reproduction in Domestic Animals, 2020, 55(1): 11-20. |
| [41] | ABAZARIKIA A H, ZHANDI M, SHAKERI M, et al. In vitro supplementation of trans-10, cis-12 conjugated linoleic acid ameliorated deleterious effect of heat stress on bovine oocyte developmental competence[J]. Theriogenology, 2020, 142: 296-302. |
| [42] | MATOS J E, MARQUES C C, MOURA T F, et al. Conjugated linoleic acid improves oocyte cryosurvival through modulation of the cryoprotectants influx rate[J]. PLoS One, 2015, 13: 60. |
| [43] | MORATÓ R, CASTILLO-MARTÍN M, YESTE M, et al. Cryotolerance of porcine in vitro-produced blastocysts relies on blastocyst stage and length of in vitro culture prior to vitrification[J]. Reproduction, Fertility and Development, 2016, 28(7): 886-892. |
| [44] | SUTTON-MCDOWALL M L, FEIL D, ROBKER R L, et al. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos[J]. Theriogenology, 2012, 77(8): 1632-1641. |
| [45] | ABDELRAZIK H, SHARMA R, MAHFOUZ R, et al. L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos[J]. Fertility and Sterility, 2009, 91(2): 589-596. |
| [46] | XU H, JIA C, CHENG W, et al. The effect of L-carnitine additive during in vitro maturation on the vitrification of pig oocytes[J]. Cellular Reprogramming, 2020, 22(4): 198-207. |
| [47] | EZOE K, YABUUCHI A, TANI T, et al. Developmental competence of vitrified-warmed bovine oocytes at the germinal-vesicle stage is improved by cyclic adenosine monophosphate modulators during in vitro maturation[J]. PLoS One, 2015, 10(5): e0126801. |
| [48] | CHANKITISAKUL V, SOMFAI T, INABA Y, et al. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes[J]. Theriogenology, 2013, 79(4): 590-598. |
| [49] | GUTNISKY C, MORADO S, GADZE T, et al. Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification[J]. Theriogenology, 2020, 143: 18-26. |
| [50] | SASAKI H, HAMATANI T, KAMIJO S, et al. Impact of oxidative stress on age-associated decline in oocyte developmental competence[J]. Frontiers in Endocrinology, 2019, 10: 811. |
| [51] | ZHU Y, LIU H, ZHENG L, et al. Vitrification of mammalian oocytes: Recent studies on mitochondrial dysfunction[J]. Biopreservation and Biobanking, 2024, 22(5): 428-440. |
| [52] | SITHARA T, DROSATOS K. Metabolic complications in cardiac aging[J]. Frontiers in Physiology, 2021, 12: 669497. |
| [53] | ZHU Y, LI J, ZHOU G, et al. Resveratrol-loaded plga enhanced vitrified oocyte viability through rab11fip4/Arf5-mediated internalization route[J]. ACS Applied Materials and Interfaces, 2025, 17(31): 44160-44177. |
| [54] | KANDIL O M, RAHMAN S, ALI R S, et al. Effect of melatonin on developmental competence, mitochondrial distribution, and intensity of fresh and vitrified/thawed in vitro matured buffalo oocytes[J]. Reproductive Biology and Endocrinology, 2024, 22(1): 39. |
| [55] | DUJIČKOVÁ L, OLEXIKOVÁ L, MAKAREVICH A V, et al. Astaxanthin added during post-warm recovery mitigated oxidative stress in bovine vitrified oocytes and improved quality of resulting blastocysts[J]. Antioxidants, 2024, 13(5): 556. |
| [56] | RUIZ-CONCA M, VENDRELL M, SABÉS-ALSINA M, et al. Coenzyme Q(10) supplementation during in vitro maturation of bovine oocytes (Bos taurus) helps to preserve oocyte integrity after vitrification[J]. Reproduction in Domestic Animals, 2017, 52(4): 52-54. |
| [57] | DAVOODIAN N, KADIVAR A, AHMADI E, et al. Quercetin effect on the efficiency of ovine oocyte vitrification at GV stage[J]. Theriogenology, 2021, 174: 53-59. |
| [58] | FERNANDES G F S, SILVA G D B, PAVAN A R, et al. Epigenetic regulatory mechanisms induced by resveratrol[J]. Nutrients, 2017, 9(11): 1201. |
| [59] | GUTIERREZ-CASTILLO E, DIAZ F A, TALBOT S A, et al. Effect of bovine oocyte vitrification with egta and post-warming recovery with resveratrol on meiotic spindle, mitochondrial function, reactive oxygen species, and developmental competence[J]. Theriogenology, 2023, 196: 59-67. |
| [60] | ZHANG P, YANG S, ZHANG H, et al. Vitrification of bovine germinal vesicle oocytes significantly decreased the methylation level of their in vitro derived MⅡ oocytes[J]. Reproduction in Domestic Animals, 2022, 34(13): 889-903. |
| [61] | COSME P, RODRÍGUEZ A B, GARRIDO M, et al. Coping with oxidative stress in reproductive pathophysiology and assisted reproduction: Melatonin as an emerging therapeutical tool[J]. Antioxidants, 2022, 12(1): 86. |
| [62] | JI P, LIU Y, YAN L, et al. Melatonin improves the vitrification of sheep morulae by modulating transcriptome[J]. Frontiers in Veterinary Science, 2023, 10: 1212047. |
| [63] | ZHANG P, YANG B, XU X, et al. Combination of CNP, MT and FLI during IVM significantly improved the quality and development abilities of bovine oocytes and IVF-derived embryos[J]. Antioxidants, 2023, 12(4): 897. |
| [64] | ZHAO X M, HAO H S, DU W H, et al. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes[J]. Journal of Pineal Research, 2016, 60(2): 132-141. |
| [65] | ZHANG Z, MU Y, DING D, et al. Melatonin improves the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma[J]. Journal of Pineal Research, 2021, 70(2): e12707. |
| [66] | SUN J, LI J, WANG Y, et al. Astaxanthin protects oocyte maturation against cypermethrin-induced defects in pigs[J]. Theriogenology, 2023, 209: 31-39. |
| [67] | XIANG D C, JIA B Y, FU X W, et al. Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes[J]. Theriogenology, 2021, 167: 13-23. |
| [68] | GENDELMAN M, ROTH Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J]. Biology of Reproduction, 2012, 87(5): 118. |
| [69] | CRANE F L. Biochemical functions of coenzyme Q10[J]. Journal of the American College of Nutrition, 2001, 20(6): 591-598. |
| [70] | KANG J T, KWON D K, PARK S J, et al. Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels[J]. Journal of Veterinary Science, 2013, 14(1): 15-20. |
| [71] | ITO J, SHIRASUNA K, KUWAYAMA T, et al. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes[J]. Cryobiology, 2020, 93: 37-43. |
| [72] | SANTOS E, APPELTANT R, DANG-NGUYEN T Q, et al. The effect of resveratrol on the developmental competence of porcine oocytes vitrified at germinal vesicle stage[J]. Reproduction in Domestic Animals, 2018, 53(2): 304-312. |
| [73] | PAPIS K, SHIMIZU M, IZAIKE Y. Factors affecting the survivability of bovine oocytes vitrified in droplets[J]. Theriogenology, 2000, 54(5): 651-658. |
| [74] | PITCHAYAPIPATKUL J, SOMFAI T, MATOBA S, et al. Microtubule stabilisers docetaxel and paclitaxel reduce spindle damage and maintain the developmental competence of in vitro-mature bovine oocytes during vitrification[J]. Reproduction, Fertility and Development, 2017, 29(10): 2028-2039. |
| [75] | WANG C L, XU H Y, XIE L, et al. Stability of the cytoskeleton of matured buffalo oocytes pretreated with cytochalasin b prior to vitrification[J]. Cryobiology, 2016, 72(3): 274-282. |
| [76] | FESAHAT F, FARAMARZI A, KHORADMEHR A, et al. Vitrification of mouse MⅡ oocytes: Developmental competency using paclitaxel[J]. Taiwanese Journal of Obstetrics and Gynecology, 2016, 55(6): 796-800. |
| [77] | MORATÓ R, MOGAS T, MADDOX-HYTTEL P. Ultrastructure of bovine oocytes exposed to taxol prior to OPS vitrification[J]. Molecular Reproduction and Development, 2008, 75(8): 1318-1326. |
| [78] | MORATÓ R, IZQUIERDO D, ALBARRACÍN J L, et al. Effects of pre-treating in vitro-matured bovine oocytes with the cytoskeleton stabilizing agent taxol prior to vitrification[J]. Molecular Reproduction and Development, 2008, 75(1): 191-201. |
| [79] | GIRKA E, GATENBY L, GUTIERREZ E J, et al. The effects of microtubule stabilizing and recovery agents on vitrified bovine oocytes[J]. Theriogenology, 2022, 182: 9-16. |
| [80] | FU X W, SHI W Q, ZHANG Q J, et al. Positive effects of taxol pretreatment on morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrification of in vitro matured porcine oocytes[J]. Animal Reproduction Science, 2009, 115(1-4): 158-168. |
| [81] | SHI W Q, ZHU S E, ZHANG D, et al. Improved development by taxol pretreatment after vitrification of in vitro matured porcine oocytes[J]. Reproduction, 2006, 131(4): 795-804. |
| [82] | TONE M, UKYO R, SAKAMOTO S H, et al. Effects of paclitaxel before vitrification on the nuclear maturation and development of immature porcine oocytes[J]. Cryoletters, 2023, 44(5): 307-313. |
| [83] | CHASOMBAT J, NAGAI T, PARNPAI R, et al. Pretreatment of in vitro matured bovine oocytes with docetaxel before vitrification: Effects on cytoskeleton integrity and developmental ability after warming[J]. Cryobiology, 2015, 71(2): 216-223. |
| [84] | HWANG I S, PARK M R, KWAK T U, et al. Effect of cytochalasin b treatment on the improvement of survival rate in vitrified pig oocyte[J]. Molecular Reproduction and Development, 2018, 22(3): 245-252. |
| [85] | OGAWA B, UENO S, NAKAYAMA N, et al. Developmental ability of porcine in vitro matured oocytes at the meiosis Ⅱ stage after vitrification[J]. Journal of Reproduction and Development, 2010, 56(3): 356-361. |
| [1] | LI Zhuo, WANG Pei, GUO Jianxiong, ZHANG Xiong, ZHAO Hongfang, JIAO Deling, JIA Baoyu, QING Yubo, CHENG Wenmin, KUI Hua, WEI Hongjiang. Effects of Porcine Oocyte Morphology and Quality on the Development of Somatic Cell Nuclear Transfer Embryo [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(12): 5785-5796. |
| [2] | MO Xianhong, LI Junjie, GUO Cheng, WEN Zhaoyu, ZOU Yuzhu, ZHAO Wenbo, XU Zhenjun. Research Progress on Vitrification Injury of Oocytes in Livestock [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(6): 2524-2532. |
| [3] | LUO Anfeng, HUA Zaidong, YANG Caixia, CHEN Fan. Effect of Nuclear Membrane Pore Subcomplex Nup98/Rae1 on Meiotic Maturation of Mouse Oocytes in vitro [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(5): 1998-2006. |
| [4] | LI Youwei, CHENG Yazhuo, SHANG Jiyong, ZHANG Tinglong, SUN Mingju. Research Progress on in vitro Maturation of Small Follicle-derived Oocytes in Mammalian [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 1171-1182. |
| [5] | LIU Keke, XUE Mengqi, TANG Feitai, DU Qiansheng, WANG Xinyu, DONG Yinyu, WANG Xiaoli. Effect of AFP Ⅲ on Mitochondria of Vitrified Mouse Oocytes [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(8): 3180-3188. |
| [6] | XIANG Decai, LI Shuiying, ZHANG Bin, ZHANG Yan, LIANG Jiachong, LYU Chunrong, HONG Qionghua, QUAN Guobo, WU Guoquan. The Study on the Role of Fetal Bovine Serum Supplementation During Postwarming Culture on Vitrified Porcine Parthenogenetic Blastocysts [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(2): 606-615. |
| [7] | MO Xianhong, YUE Kaiping, SUN Liyao, LI Bing, ZHAO Bing, GUO Cheng, XU Zhenjun. Effect of 2-APB on Development Capacity of Vitrified Bovine Mature Oocytes [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(7): 2669-2676. |
| [8] | JI Wenhui, WANG Yuling, HE Honghong, FU Wei, LAN Daoliang. Effects of Vitamin A on the Maturation and Subsequent Development of Yak Oocytes in vitro [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(12): 4707-4714. |
| [9] | JIAO Anhui, ZHANG Xiaomeng, ZHAO Yuhan, WANG Yu, GAO Qingshan. Effects of Limonin on in vitro Maturation of Mouse Oocytes and Embryo Development of in vitro Fertilization [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(10): 3891-3900. |
| [10] | WANG Yu, ZHAO Yuhan, JIAO Anhui, WANG Yuqi, GAO Qingshan. Effects of Acetochlor on in vitro Maturation of Mouse Oocytes [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(10): 3909-3917. |
| [11] | LI Xiaoxia, XIAO Hongwei, CAO Pinghua, XU Zhiqian, ZHANG Fang, ZHANG Zhiyang, JING Penghua, YU Xueli, LI Yinghua. Effects of Trehalose on Vitrification of Bovine Immature Oocytes [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(1): 224-231. |
| [12] | YAO Ying, CHEN Yan, XIONG Xianrong, MIPAM Tserang-donko, CHAI Zhixin, JI Wenhui, LAN Daoliang. Study on the Expression and Subcellular Localization of G Protein-coupled Receptor 50 During in vitro Maturation Process of Yak Oocytes [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(9): 3387-3393. |
| [13] | XUE Mengqi, ZHOU Yue, LIU Keke, WANG Xinyu, DONG Yinyu, TANG Xiaochuan, WANG Xiaoli. Effect of Vitrification on MⅡ Oocytes and Their DNA of Porcine [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(7): 2475-2483. |
| [14] | ZHU Tianqi, LI Jia, LIU Guoshi, ZHANG Lu. The Roles of Calcium Oscillations in the Fertilization and Activation of Oocytes [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(4): 1343-1350. |
| [15] | YAO Yujun, LI Guangdong, WU Hao, MA Wenkui, YANG Hai, GUAN Shengyu, LYU Dongying, FU Yao, ZHU Tianqi, JI Pengyun, TAN Xinxing, ZHAO Wanmin, LIAN Zhengxing, ZHANG Lu, LIU Guoshi. Effects of Resveratrol and Melatonin on Transfection of Sheep Fetal Fibroblasts and in vitro Maturation of Oocytes [J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4497-4507. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||