China Animal Husbandry & Veterinary Medicine ›› 2022, Vol. 49 ›› Issue (12): 4665-4673.doi: 10.16431/j.cnki.1671-7236.2022.12.016
• Genetics and Breeding • Previous Articles Next Articles
LI Xiaojiao, HE Yanhua, ZHU Xinyu, ZOU Xian, LUO Chenglong
Received:
2022-03-21
Online:
2022-12-05
Published:
2022-12-01
CLC Number:
LI Xiaojiao, HE Yanhua, ZHU Xinyu, ZOU Xian, LUO Chenglong. Research Progress on Application of CRISPR/Cas9 Technology in Pigs and Chickens[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(12): 4665-4673.
[1] SCHMUTZ J, GRIMWOOD J.Genomes:Fowl sequence[J].Nature, 2004, 432(7018):679-680. [2] BRADLEY A.Mining the mouse genome[J].Nature, 2002, 420(6915):512-514. [3] VAN EENENNAAM A L, DE FIGUEIREDO SILVA F, TROTT J F, et al.Genetic engineering of livestock:The opportunity cost of regulatory delay[J].Annual Review of Animal Biosciences, 2021, 9:453-478. [4] PERISSE I V, FAN Z, SINGINA G N, et al.Improvements in gene editing technology boost its applications in livestock[J].Frontiers in Genetics, 2020, 11:614688. [5] RAN F A, HSU P D, WRIGHT J, et al.Genome engineering using the CRISPR-Cas9 system[J].Nature Protocols, 2013, 8(11):2281-2308. [6] BI Y, HUA Z, LIU X, et al.Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J].Scientific Reports, 2016, 6:31729. [7] LIU X, LIU H, WANG M, et al.Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs[J].Transgenic Research, 2019, 28(1):141-150. [8] QIAN L, TANG M, YANG J, et al.Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Scientific Reports, 2015, 5:14435. [9] WANG K, OUYANG H, XIE Z, et al.Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J].Scientific Reports, 2015, 5:16623. [10] RAO S, FUJIMURA T, MATSUNARI H, et al.Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets[J].Molecular Reproduction and Development, 2016, 83(1):61-70. [11] VAN DE LAVOIR M C, DIAMOND J H, LEIGHTON P A, et al.Germline transmission of genetically modified primordial germ cells[J].Nature, 2006, 441(7094):766-769. [12] MACDONALD J, GLOVER J D, TAYLOR L, et al.Characterisation and germline transmission of cultured avian primordial germ cells[J].PLoS One, 2010, 5(11):e15518. [13] GAO M, ZHU X, YANG G, et al.CRISPR/Cas9-mediated gene editing in porcine models for medical research[J].DNA and Cell Biology, 2021, 40(12):1462-1475. [14] WHITWORTH K M, LEE K, BENNE J A, et al.Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J].Biology of Reproduction, 2014, 91(3):78. [15] WHITWORTH K M, ROWLAND R R, EWEN C L, et al.Gene-edited pigs are protected from Porcine reproductive and respiratory syndrome virus[J].Nature Biotechnology, 2016, 34(1):20-22. [16] KOSLOVA A, TREFIL P, MUCKSOVA J, et al.Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of Avian leukosis virus[J].Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(4):2108-2112. [17] 肖榕.利用猪全基因组CRISPR/Cas9敲除文库筛选猪流感病毒复制必需宿主基因[D].武汉:华中农业大学, 2019. XIAO R.Screening of essential host genes required to support Swine influenza virus replication utilizing pig genome-scale CRISPR/Cas9 knockout libraries[D].Wuhan:Huazhong Agricultural University, 2019.(in Chinese) [18] ZHAO C, LIU H, XIAO T, et al.CRISPR screening of porcine sgRNA library identifies host factors associated with Japanese encephalitis virus replication[J].Nature Communication, 2020, 11(1):5178. [19] DESCHAMPS J Y, ROUX F A, SAÏ P, et al.History of xenotransplantation[J].Xenotransplantation, 2005, 12(2):91-109. [20] MAGRE S, TAKEUCHI Y, BARTOSCH B.Xenotransplantation and pig Endogenous retroviruses[J]. Reviews in Medical Virology, 2003, 13(5):311-329. [21] PHELPS C J, KOIKE C, VAUGHT T D, et al.Production of alpha 1, 3-galactosyltransferase-deficient pigs[J].Science, 2003, 299(5605):411-414. [22] DENNER J, SCHUURMAN H J, PATIENCE C.The international xenotransplantation association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes——chapter 5:Strategies to prevent transmission of Porcine endogenous retroviruses[J].Xenotransplantation, 2009, 16(4):239-248. [23] SEMAAN M, ROTEM A, BARKAI U, et al.Screening pigs for xenotransplantation:Prevalence and expression of Porcine endogenous retroviruses in Göttingen minipigs[J].Xenotransplantation, 2013, 20(3):148-156. [24] YANG L, GVELL M, NIU D, et al.Genome-wide inactivation of Porcine endogenous retroviruses (PERVs)[J].Science, 2015, 350(6264):1101-1104. [25] NIU D, WEI H J, LIN L, et al.Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J].Science, 2017, 357(6357):1303-1307. [26] YUE Y, XU W, KAN Y, et al.Extensive germline genome engineering in pigs[J].Nature Biomedical Engineering, 2021, 5(2):134-143. [27] BATES G P, DORSEY R, GUSELLA J F, et al.Huntington disease[J]. Nature Reviews Disease Primers, 2015, 1:15005. [28] YAN S, TU Z, LIU Z, et al.A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J].Cell, 2018, 173(4):989-1002. [29] SATO M, KOSUKE M, KORIYAMA M, et al.Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes[J].Theriogenology, 2018, 108:29-38. [30] HAN K, LIANG L, LI L, et al.Generation of Hoxc13 knockout pigs recapitulates human ectodermal dysplasia-9[J]. Human Molecular Genetics, 2017, 26(1):184-191. [31] KANG J T, RYU J, CHO B, et al.Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting[J]. Reproduction in Domestic Animals, 2016, 51(6):970-978. [32] VAN GORP H, DELPUTTE P L, NAUWYNCK H J.Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy[J].Molecular Immunology, 2010, 47(7-8):1650-1660. [33] CALVERT J G, SLADE D E, SHIELDS S L, et al.CD163 expression confers susceptibility to Porcine reproductive and respiratory syndrome viruses[J].Journal of Virology, 2007, 81(14):7371-7379. [34] BURKARD C, LILLICO S G, REID E, et al.Precision engineering for PRRSV resistance in pigs:Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J].PLoS Pathogens, 2017, 13(2):e1006206. [35] YANG Y L, LIU J, WANG T Y, et al.Aminopeptidase N is an entry co-factor triggering Porcine deltacoronavirus entry via an endocytotic pathway[J]. Journal of Virology, 2021, 95(21):e0094421. [36] GUO C, WANG M, ZHU Z, et al.Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to Porcine reproductive and respiratory syndrome virus 2 infection[J].Frontiers in Immunology, 2019, 10:1846. [37] WHITWORTH K M, PRATHER R S.Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome[J].Molecular Reproduction and Development, 2017, 84(9):926-933. [38] ZHANG Q, YOO D.PRRS virus receptors and their role for pathogenesis[J].Veterinary Microbiology, 2015, 177(3-4):229-241. [39] TU C F, CHUANG C K, HSIAO K H, et al.Lessening of Porcine epidemic diarrhoea virus susceptibility in piglets after editing of the CMP-N-glycolylneuraminic acid hydroxylase gene with CRISPR/Cas9 to nullify N-glycolylneuraminic acid expression[J]. PLoS One, 2019, 14(5):e0217236. [40] WHITWORTH K M, ROWLAND R R R, PETROVAN V, et al.Resistance to Coronavirus infection in amino peptidase N-deficient pigs[J].Transgenic Research, 2019, 28(1):21-32. [41] YUAN H, YANG L, ZHANG Y, et al.Current status of genetically modified pigs that are resistant to virus infection[J].Viruses, 2022, 14(2):e0276422. [42] SHALEM O, SANJANA N E, HARTENIAN E, et al.Genome-scale CRISPR-Cas9 knockout screening in human cells[J].Science, 2014, 343(6166):84-87. [43] PUSCHNIK A S, MAJZOUB K, OOI Y S, et al.A CRISPR toolbox to study virus-host interactions[J].Nature Reviews Microbiology, 2017, 15(6):351-364. [44] SUN L, ZHAO C, FU Z, et al.Genome-scale CRISPR screen identifies TMEM41B as a multi-function host factor required for Coronavirus replication[J].PLoS Pathogens, 2021, 17(12):e1010113. [45] YU C, ZHONG H, YANG X, et al.Establishment of a pig CRISPR/Cas9 knockout library for functional gene screening in pig cells[J].Biotechnology Journal, 2021, 27(4):e2100408. [46] YANG D, WANG C E, ZHAO B, et al.Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs[J].Human Molecular Genetics, 2010, 19(20):3983-3994. [47] LI X, YANG Y, BU L, et al.Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing[J]. Cell Research, 2014, 24(4):501-504. [48] RUAN J, LI H, XU K, et al.Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs[J].Scientific Reports, 2015, 5:14253. [49] XIE Z, JIAO H, XIAO H, et al.Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J]. Antiviral Research, 2020, 174:104696. [50] MA L, WANG Y, WANG H, et al.Screen and verification for transgene integration sites in pigs[J].Scientific Reports, 2018, 8(1):7433. [51] SANDER J D, JOUNG J K.CRISPR-Cas systems for editing, regulating and targeting genomes[J].Nature Biotechnology, 2014, 32(4):347-355. [52] CHU V T, WEBER T, WEFERS B, et al.Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells[J]. Nature Biotechnology, 2015, 33(5):543-548. [53] MARUYAMA T, DOUGAN S K, TRUTTMANN M C, et al.Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J].Nature Biotechnology, 2015, 33(5):538-542. [54] AUER T O, DUROURE K, DE CIAN A, et al.Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair[J].Genome Research, 2014, 24(1):142-153. [55] CRISTEA S, FREYVERT Y, SANTIAGO Y, et al.In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration[J]. Biotechnology and Bioengineering, 2013, 110(3):871-880. [56] OISHI I, YOSHII K, MIYAHARA D, et al.Targeted mutagenesis in chicken using CRISPR/Cas9 system[J]. Scientific Reports, 2016, 6:23980. [57] PARK T S, LEE H J, KIM K H, et al.Targeted gene knockout in chickens mediated by TALENs[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35):12716-12721. [58] ZUO Q, WANG Y, CHENG S, et al.Site-directed genome knockout in chicken cell line and embryos can use CRISPR/Cas gene editing technology[J].G3-Genes Genomes Genetics, 2016, 6(6):1787-1792. [59] TAYLOR L, CARLSON D F, NANDI S, et al.Efficient TALEN-mediated gene targeting of chicken primordial germ cells[J]. Development, 2017, 144(5):928-934. [60] WOODCOCK M E, GHEYAS A A, MASON A S, et al.Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds[J].Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(42):20930-20937. [61] OULAD-ABDELGHANI M, BOUILLET P, DÉCIMO D, et al.Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene[J].Journal of Molecular Cell Biology, 1996, 135(2):469-477. [62] MARK M, JACOBS H, OULAD-ABDELGHANI M, et al.STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation[J].Journal of Cell Science, 2008, 121(Pt 19):3233-3242. [63] ZHANG Y, WANG Y, ZUO Q, et al.CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation[J]. PLoS One, 2017, 12(2):e0172207. [64] CHALLAGULLA A, JENKINS K A, O'NEIL T E, et al.Germline engineering of the chicken genome using CRISPR/Cas9 by in vivo transfection of PGCs[J]. Animal Biotechnology, 2020, 24:1-10. [65] XU K, HAN C X, ZHOU H, et al.Effective MSTN gene knockout by AdV-delivered CRISPR/Cas9 in postnatal chick leg muscle[J].International Journal of Molecular Sciences, 2020, 21(7):4-6. [66] CHAI N, BATES P.Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J Avian leukosis virus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(14):5531-5536. [67] KUCEROVÁ D, PLACHY J, REINISOVÁ M, et al.Nonconserved tryptophan 38 of the cell surface receptor for subgroup J Avian leukosis virus discriminates sensitive from resistant avian species[J].Journal of Virology, 2013, 87(15):8399-8407. [68] LEE H J, LEE K Y, PARK Y H, et al.Acquisition of resistance to Avian leukosis virus subgroup B through mutations on TVB cysteine-rich domains in DF-1 chicken fibroblasts[J]. Veterinary Research, 2017, 48(1):48. [69] STRAATHOF K C, PULō M A, YOTNDA P, et al.An inducible caspase 9 safety switch for T-cell therapy[J]. Blood, 2005, 105(11):4247-4254. [70] MARIN V, CRIBIOLI E, PHILIP B, et al.Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells[J].Human Gene Therapy Methods, 2012, 23(6):376-386. [71] BALLANTYNE M, WOODCOCK M, DODDAMANI D, et al.Direct allele introgression into pure chicken breeds using Sire Dam Surrogate (SDS) mating[J].Nature Communication, 2021, 12(1):659. [72] 林晓, 李硕, 金子笛, 等.DMRT1和FOXL2基因在动物性别决定中的功能研究进展[J].中国家禽, 2021, 43(9):98-105. LIN X, LI S JIN Z D.Research progress on the functions of DMRT1 and FOXL2 genes in animal sex determination[J].China Poultry, 2021, 43(9):98-105.(in Chinese) [73] IOANNIDIS J, TAYLOR G, ZHAO D, et al.Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics[J].Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10):e0129338. [74] 高菲.利用piggyBac转座子及CRISPR文库规模化制备突变体鸡的研究[D].北京:中国农业大学, 2017. GAO F.Construction of mutant chickens via piggyBac transposon and CRISPR library[D].Beijing:China Agricultural University, 2017.(in Chinese) [75] 徐娟, 刘忠媛, 刘彦峰, 等.基于CRISPR-Cas9技术的鸡成纤维细胞系全基因组敲除文库的建立与初步应用[J].中国动物传染病学报, 2022, 45:1-10. XU J, LIU Z Y, LIU Y F, et al.Establishment and preliminary application of chicken fibroblast cell line based on genome-scale CRISPR-Cas9 knockout screening[J].Chinese Journal of Animal Infectious Diseases, 2022, 45:1-10.(in Chinese) [76] XU K, ZHANG X, LIU Z, et al.A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection[J]. Science China-Life Sciences, 2022, 38(2):1-12. [77] LINO C A, HARPER J C, CARNEY J P, et al.Delivering CRISPR:A review of the challenges and approaches[J].Drug Delivery, 2018, 25(1):1234-1257. |
[1] | LI Jun, YIN Lei, YANG Ying, HU Jianxin, TANG Li, QIN Qingming, LIANG Chengcheng, WU Haigang, ZHAO Mengting, DUAN Wenmiao. Effects of Different Fermentation Bedding Materials on Growth Performance, Digestive Enzyme Activities, Serum Biochemical and Immune Indices in Patridge Shank Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3047-3058. |
[2] | YANG Quan, LI Xiao, YAN Zunqiang, WANG Pengfei, HUANG Xiaoyu, GAO Xiaoli, YANG Qiaoli, GUN Shuangbao, YANG Jiaojiao. Cloning,Bioinformatics Analysis and Tissue Expression of CXCL12 Gene in Hezuo Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2482-2493. |
[3] | REN Hao, ZHU Yixuan, CHAO Tingting, WANG Xiaoyi, LU Shaoxiong, YANG Yongli, CHEN Qiang, LI Mingli. Identification and Functional Prediction of lncRNA in Longissimus Dorsi Muscle of Saba Pigs with Different Growth Rates [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2494-2505. |
[4] | TANG Li, DENG Kaiwei, HE Shuhai, LI Jun, QIN Qingming, LIANG Chengcheng, WU Haigang, HAN Xu, LU Jianing. Effects of Green Tea Aqueous Extract on Nutrient Apparent Metabolism Rate,Digestive Enzyme Activities and Serum Biochemical Indices of Cyan-shank Partridge chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2552-2560. |
[5] | CAO Lihua, LI Huali, REN Huibo, LUO Baoming, LIU Yingying, CUI Qingming, DENG Yuan, ZHU Ji, HU Xionggui, LUO Jianhui, ZUO Jianbo, CHEN Chen, PENG Yinglin. Effects of Gender and Slaughter Weight on Carcass and Meat Quality of Guangyi Black Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2612-2625. |
[6] | LIU Jiayi, WU Hua, SHEN Tong, WANG Kailong, WANG Wensheng, CHEN Zixin. Effects of Extract of Lycium ruthenicum Murr on Growth Performance,Slaughter Performance,Antioxidant Function and Meat Quality of Bamei Ternary Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2637-2649. |
[7] | XU Kuowei, LENG Tangjian, XIONG Bao, LI Jinyan, GUO Panjiang, WU Peifu, CHEN Fenfen, ZHOU Jielong. Whole-genome Selection Signal Analysis of Ninglang Plateau Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 1941-1954. |
[8] | QIN Xiyu, LIU Xiaoxue, CHAI Yi, LAI Mengxuan, REN Xiaomin, ZHANG Depeng, ZHANG Peng, LIJuntao, LI Yixuan, WANG Ran, HAO Yanling, WU Huijuan, WANG Xiaoyu. Establishment and Evaluation of Double Cannulas Model of Duodenal and Terminal Ileum of Bama Minipigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2078-2087. |
[9] | ZHONG Min, YANG Xiaopei, LIU Ruiping, SONG Wenjing, ZHONG Yunping. Effect of Dietary Andrographis paniculata Extract Supplementation on the Growth Performance,Serum Biochemistries,and Gut Health in Ningdu Yellow Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2115-2127. |
[10] | TIAN Yingping, DU Yun, JIANG Yaozhou, LIU Qinsong, ZHOU Xiaohong, WU Sheng, ZHAO Xudong, ZHANG Fuping. Study on the Growth and Development,Meat Performance and Their Correlation Analysis of Guizhou Recessive White-feather Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2208-2218. |
[11] | LI Tianxiu, LI Xinpeng, DONG Xinxing, LAN Guoxiang, YAN Dawei, ZHU Jiawei. Amplification,Sequence Analysis and Tissue Expression Study of HMOX2 Gene in Lijiang Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2219-2231. |
[12] | MIAO Na, QIAO Jiakun, YANG Hui, HAN Pingping, XU Fangjun, CHE Zhaoxuan, DAI Xiangyu, XU Minghang, LONG Zhiwei, ZHU Mengjin. Genome Wide Association Study of Immune Traits in Duroc×Erhualian F2 Generation Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1455-1467. |
[13] | HU Huihui, FU Panpan, LI Jie, YAN Zunqiang, GAO Xiaoli, YANG Jiaojiao, HUANG Xiaoyu. Cloning,Identification and Tissue Expression Analysis of TRIF Gene CDS Region in Hezuo Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1478-1487. |
[14] | ZHANG Zhengfei, TANG Anxing, SUN Jindong, FU Lixiang, WANG Xingxian, ZHANG Shiyun, YANG Liangyu, NIU Guoyi, TAO Linli. Study on the Appropriate Dietary Crude Protein Level of Yanjin Black-bone Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1543-1553. |
[15] | HE Xiaofei, LEI Yuhang, ZHU Li, GAN Mailin, SHEN Linyuan. Research Progress on circRNA Regulating Fat Deposition in Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1627-1638. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||