China Animal Husbandry & Veterinary Medicine ›› 2022, Vol. 49 ›› Issue (1): 53-59.doi: 10.16431/j.cnki.1671-7236.2022.01.006
• Biotechnology • Previous Articles Next Articles
YANG Sha1, HAO Haisheng1, DU Weihua1, PANG Yunwei1, ZHAO Shanjiang1, ZOU Huiying1, ZHU Huabin1, YANG Yuze2, ZHAO Xueming1
Received:
2021-07-06
Online:
2022-01-05
Published:
2021-12-29
CLC Number:
YANG Sha, HAO Haisheng, DU Weihua, PANG Yunwei, ZHAO Shanjiang, ZOU Huiying, ZHU Huabin, YANG Yuze, ZHAO Xueming. Research Progress of CRISPR/dCas9 Technology in Gene Expression Regulation[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(1): 53-59.
[1] GASIUNAS G,BARRANGOU R,HORVATH P,et al.Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(39):E2579-E2586. [2] ISHINO Y,SHINAGAWA H,MAKINO K,et al.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J].Journal of Bacteriology,1987,169(12):5429-5433. [3] SHMAKOV S,SMARGON A,SCOTT D,et al.Diversity and evolution of class 2 CRISPR-Cas systems[J].Nature Reviews.Microbiology,2017,15(3):169-182. [4] BHAYA D,DAVISON M,BARRANGOU R.CRISPR-Cas systems in bacteria and archaea:Versatile small RNAs for adaptive defense and regulation[J].Annual Review of Genetics,2011,45:273-297. [5] JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821. [6] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823. [7] JINEK M,JIANG F,TAYLOR D W,et al.Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J].Science,2014,343(6176):1247997. [8] NISHIMASU H,CONG L,YAN W X,et al.Crystal structure of Staphylococcus aureus Cas9[J].Cell,2015,162(5):1113-1126. [9] STERNBERG S H,REDDING S,JINEK M,et al.DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J].Nature,2014,507(7490):62-67. [10] NIU Y,SHEN B,CUI Y,et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J].Cell,2014,156(4):836-843. [11] BARMAN A,DEB B,CHAKRABORTY S.A glance at genome editing with CRISPR-Cas9 technology[J].Current Genetics,2020,66(3):447-462. [12] WYMAN C,KANAAR R.DNA double-strand break repair:All's well that ends well[J].Annual Review of Genetics,2006,40:363-383. [13] QI L S,LARSON M H,GILBERT L A,et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J].Cell,2013,152(5):1173-1183. [14] MORADPOUR M, ABDULAH S N A.CRISPR/dCas9 platforms in plants:Strategies and applications beyond genome editing[J].Plant Biotechnology Journal,2020,18(1):32-44. [15] PICKAR-OLIVER A,GERSBACH C A.The next generation of CRISPR-Cas technologies and applications[J].Nature Reviews.Molecular Cell Biology,2019,20(8):490-507. [16] MAKAROVA K S,HAFT D H,BARRANGOU R,et al.Evolution and classification of the CRISPR-Cas systems[J].Nature Reviews.Microbiology,2011,9(6):467-477. [17] MCCARTY N S,GRAHAM A E,STUDENÁ L,et al.Multiplexed CRISPR technologies for gene editing and transcriptional regulation[J].Nature Communications,2020,11(1):1281. [18] PEREZ-PINERA P,KOCAK D D,VOCKLEY C M,et al.RNA-guided gene activation by CRISPR-Cas9-based transcription factors[J].Nature Methods,2013,10(10):973-976. [19] MAEDER M L,LINDER S J,CASCIO V M,et al.CRISPR RNA-guided activation of endogenous human genes[J].Nature Methods,2013,10(10):977-979. [20] THAKORE P I,BLACK J B,HILTON I B,et al.Editing the epigenome:Technologies for programmable transcription and epigenetic modulation[J].Nature Methods,2016,13(2):127-137. [21] MAROUFI F,MAALI A,ABDOLLAHPOUR-ALITAPPEH M,et al.CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy[J].Epigenomics,2020,12(20):1845-1859. [22] TANENBAUM M E,GILBERT L A,QI L S,et al.A protein-tagging system for signal amplification in gene expression and fluorescence imaging[J].Cell,2014,159(3):635-646. [23] CHAVEZ A,SCHEIMAN J,VORA S,et al.Highly efficient Cas9-mediated transcriptional programming[J].Nature Methods,2015,12(4):326-328. [24] KONERMANN S,BRIGHAM M D,TREVINO A E,et al.Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J].Nature,2015,517(7536):583-588. [25] BIKARD D,JIANG W,SAMAI P,et al.Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[J].Nucleic Acids Research,2013,41(15):7429-7437. [26] DOMINGUEZ A A,LIM W A,QI L S.Beyond editing:Repurposing CRISPR-Cas9 for precision genome regulation and interrogation[J].Nature Reviews.Molecular Cell Biology,2016,17(1):5-15. [27] GILBERT L A,LARSON M H,MORSUT L,et al.CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J].Cell,2013,154(2):442-451. [28] GAO X,TSANG J C H,GABA F,et al.Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers[J].Nucleic Acids Research,2014,42(20):e155. [29] KEARNS N A,PHAM H,TABAK B,et al.Functional annotation of native enhancers with a Cas9-histone demethylase fusion[J].Nature Methods,2015,12(5):401-403. [30] THAKORE P I,D'IPPOLITO A M,SONG L,et al.Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements[J].Nature Methods,2015,12(12):1143-1149. [31] AMABILE A,MIGLIARA A,CAPASSO P,et al.Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing[J].Cell,2016,167(1):219-232. [32] YEO N C,CHAVEZ A,LANCE-BYRNE A,et al.An enhanced CRISPR repressor for targeted mammalian gene regulation[J].Nature Methods,2018,15(8):611-616. [33] ALERASOOL N,SEGAL D,LEE H,et al.An efficient KRAB domain for CRISPRi applications in human cells[J].Nature Methods,2020,17(11):1093-1096. [34] WOLFFE A P,MATZKE M A.Epigenetics:Regulation through repression[J].Science,1999,286(5439):481-486. [35] LAPRISE S L.Implications of epigenetics and genomic imprinting in assisted reproductive technologies[J].Molecular Reproduction and Development,2009,76(11):1006-1018. [36] TUCCI V,ISLES A R,KELSEY G,et al.Genomic imprinting and physiological processes in mammals[J].Cell,2019,176(5):952-965. [37] 孔康杰,倪颖勤.表观遗传学修饰对小胶质细胞功能调控的研究进展[J].中国眼耳鼻喉科杂志,2021,21(1):60-64. KONG K J,NI Y Q.Research progress in epigenetic modifications regulating functions of microglia[J].Chinese Journal of Ophthalmology and Otolaryngology,2021,21(1):60-64.(in Chinese) [38] LI B,CAREY M,WORKMAN J L.The role of chromatin during transcription[J].Cell,2007,128(4):707-719. [39] HILTON I B,D'IPPOLITO A M,VOCKLEY C M,et al.Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers[J].Nature Biotechnology,2015,33(5):510-517. [40] BOHNSACK J P,PATEL V K,MORROW A L.Ethanol exposure regulates expression via histone deacetylation at the promoter in cultured cortical neurons[J].The Journal of Pharmacology and Experimental Therapeutics,2017,363(1):1-11. [41] KWON D Y,ZHAO Y-T,LAMONICA J M,et al.Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC[J].Nature Communications,2017,8:15315. [42] LIU J,SUN M,CHO K B,et al.A CRISPR-Cas9 repressor for epigenetic silencing of KRAS[J].Pharmacological Research,2021,164:105304. [43] CHEN X,WEI M,LIU X,et al.Construction and validation of the CRISPR/dCas9-EZH2 system for targeted H3K27Me3 modification[J].Biochemical and Biophysical Research Communications,2019,511(2):246-252. [44] FUKUSHIMA H S,TAKEDA H,NAKAMURA R.Targeted in vivo epigenome editing of H3K27me3[J].Epigenetics & Chromatin,2019,12(1):17. [45] GUHATHAKURTA S,KIM J,ADAMS L,et al.Targeted attenuation of elevated histone marks at SNCA alleviates α-synuclein in Parkinson's disease[J].EMBO Molecular Medicine,2021,13(2):e12188. [46] BIRD A.DNA methylation patterns and epigenetic memory[J].Genes & Development,2002,16(1):6-21. [47] ADAMS R L.Eukaryotic DNA methyltransferases——Structure and function[J].BioEssays,1995,17(2):139-145. [48] JONES P A,BAYLIN S B.The fundamental role of epigenetic events in cancer[J].Nature Reviews.Genetics,2002,3(6):415-428. [49] WALSH C P,CHAILLET J R,BESTOR T H.Transcription of IAP endogenous retroviruses is constrained by cytosine methylation[J].Nature Genetics,1998,20(2):116-117. [50] VERTINO P M,SEKOWSKI J A,COLL J M,et al.DNMT1 is a component of a multiprotein DNA replication complex[J].Cell Cycle,2002,1(6):416-423. [51] OKANO M,BELL D W,HABER D A,et al.DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J].Cell,1999,99(3):247-257. [52] MCDONALD J I,CELIK H,ROIS L E,et al.Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation[J].Biology Open,2016,5(6):866-874. [53] VOJTA A,DOBRINIĆ P,TADIĆ V,et al.Repurposing the CRISPR-Cas9 system for targeted DNA methylation[J].Nucleic Acids Research,2016,44(12):5615-5628. [54] LIU X S,WU H,JI X,et al.Editing DNA methylation in the mammalian genome[J].Cell,2016,167(1):233-247. [55] WEI Y,LANG J,ZHANG Q,et al.DNA methylation analysis and editing in single mammalian oocytes[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(20):9883-9892. [56] MORITA S,NOGUCHI H,HORII T,et al.Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions[J].Nature Biotechnology,2016,34(10):1060-1065. [57] HUANG Y-H,SU J,LEI Y,et al.DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A[J].Genome Biology,2017,18(1):176. [58] PFLUEGER C,TAN D,SWAIN T,et al.A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs[J].Genome Research,2018,28(8):1193-1206. [59] STEPPER P,KUNGULOVSKI G,JURKOWSKA R Z,et al.Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3l methyltransferase[J].Nucleic Acids Research,2017,45(4):1703-1713. [60] WU H,ZHANG Y.Reversing DNA methylation:Mechanisms,genomics,and biological functions[J].Cell,2014,156(1-2):45-68. [61] LIU X S,WU H,KRZISCH M,et al.Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene[J].Cell,2018,172(5):979-992. [62] XU X,TAO Y,GAO X,et al.A CRISPR-based approach for targeted DNA demethylation[J].Cell Discovery,2016,2:16009. [63] XU X,TAN X,TAMPE B,et al.High-fidelity CRISPR/Cas9-based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis[J].Nature Communications,2018,9(1):3509. |
[1] | WANG Nan, DU Weiwei, WANG Wanjie, WANG Yue, YUAN Maosha, NIE Yuxin, SUN Yaru, LIU Zhiguo, WU Tianwen, MU Yulian. Establishment of ST Cell Lines with WIP1 Gene g.37536832 C>A Mutation Using the CRISPR/Cas9 Gene Editing System [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 1966-1976. |
[2] | LI Chaocheng, LIU Yaxing, LI Jian, LI Yunlei, JIA Bin. Study on the Mechanism of Zfy Gene in the Development of Sperm Tail [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1222-1230. |
[3] | XIANG Jiaojiao, YUAN Na, LI Huihui, SHAO Mingzhu, ZHAO Fuping, ZHANG Longchao, WANG Lixian, SHI Lijun, CHEN Bin. Function Study on SOX12 Gene in Vero Cells Infected with Porcine Epidemic Diarrhea Virus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 289-297. |
[4] | JIA Wenfeng, JIANG Xiangxiang, TAO Huili, WANG Anping, WU Zhi, ZHU Shanyuan. Development of a Method for Rapid Construction of Recombinant Duck Enteritis Virus Based on HDR-CRISPR/Cas9 Technology [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 298-309. |
[5] | DONG Zexia, LIN Xin, ZHOU Qilyu, WANG Nan, HUANG Lei, LIU Zhiguo, FENG Zheng, MU Yulian. Construction and PRRSV Infection Characteristic Analysis of CD163 Gene Knockout iPAMs [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(8): 3471-3483. |
[6] | ZHANG Xueping, LIU Jiayi, WANG Yanfang, WU Tianwen. Construction of ACTA1 Gene Knockout PEFs Cell Lines by CRISPR/Cas9 Editing System [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(6): 2273-2284. |
[7] | DONG Jiao, LU Fan, FANG Xiaomin, CHEN Yuzhe, BAO Wenbin, WANG Haifei. Construction of Porcine KLF4 Gene Knockout Cell Using CRISPR/Cas9 Technology and Its Effect on Cell Viability [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 893-902. |
[8] | WANG Shouyuan, YUN Hongmei, SHI Mingyue, QIN Yunmeng, LI Xiong, CHEN Junzhou, ZHOU Chenbo, CAO Guoqing. Effect of Porcine RPL36A Gene on PK15 Cell Proliferation [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(8): 3035-3044. |
[9] | WANG Hui, FENG Baoliang, XIANG Guangming, HUANG Lei, LIU Zhiguo, LI Kui, MU Yulian. Construction of iPAMs with CD163 Monoallelic Expression and Characterization of Their Mediating PRRSV Infection [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(7): 2617-2628. |
[10] | ZHANG Jiaxiang, HAN Diangang, SHI Yaling, MAO Xiaoyue, ZHAO Kaiwei, DU Xuan, XIN Jige. Construction of IPEC-J2 Cell Lines with PPARγ Gene Knockout Mediated by CRISPR/Cas9 Technology [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(7): 2670-2677. |
[11] | CHEN Cui, GONG Lei, XU Zhe, WANG Xiaobo. Study on the Inhibition of Hydrogen Peroxide-induced Cellular Aging by AMPK [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(6): 2255-2264. |
[12] | SHA Fangfang, FAN Pei, YANG Peichang, ZHANG Lu, LI Jianke. Generation of Mrjp1 Gene Knock-in Mice with Specific Expression in Vascular Smooth Muscle Cells via CRISPR/Cas9 Strategy [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(11): 4392-4402. |
[13] | GAO Xiaomin, ZHOU Shujian, CHEN Chen, JIN Jing, HU Cai, ZHANG Chen, ZUO Qisheng, ZHANG Yani, CHEN Guohong, LI Bichun. Regulation of STAT1 and Histone Acetylation Modification on lncRNA-BMP4 Transcription in Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(9): 3321-3332. |
[14] | MENG Jiejie, SONG Yue, FAN Wenjie, YANG Le, XING Jiayou, WANG Jiang, CHU Beibei, YANG Guoyu, WANG Mengdi. Effect of Toll-like Receptor 7 Gene Knockout on Proliferation of Vesicular Stomatitis Virus [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(6): 2011-2021. |
[15] | XIE Sihao, GOU Hongchao, BIAN Zhibiao, LI Bin, CAI Rujian, ZANG Yingan, LI Chunling. Effects of MLKL Gene Knockout on Replication of Pseudorabies Virus [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(5): 1934-1941. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||