China Animal Husbandry & Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (10): 3595-3603.doi: 10.16431/j.cnki.1671-7236.2021.10.010
• Physiology and Biochemistry • Previous Articles Next Articles
LIN Zekun, ZHUANG Xiaona, LUO Junyi, CHEN Ting, XI Qianyun, ZHANG Yongliang, SUN Jiajie
Received:
2021-04-23
Online:
2021-10-20
Published:
2021-09-30
CLC Number:
LIN Zekun, ZHUANG Xiaona, LUO Junyi, CHEN Ting, XI Qianyun, ZHANG Yongliang, SUN Jiajie. Effects of Non-coding RNAs on Skeletal Muscle Development in Pigs[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(10): 3595-3603.
[1] DOU M, YAO Y, MA L, et al.The long noncoding RNA MyHC ⅡA/X-AS contributes to skeletal muscle myogenesis and maintains the fast fiber phenotype[J]. Journal of Biological Chemistry, 2020, 295(15):4937-4949. [2] WANG X Y, CHEN X L, HUANG Z Q, et al.microRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression[J]. Animal, 2017, 11(12):2268-2274. [3] KAIKKONEN M U, ADELMAN K.Emerging roles of non-coding RNA transcription[J]. Trends in Biochemical Sciences, 2018, 43(9):654-667. [4] MATTICK J S, MAKUNIN I V.Non-coding RNA[J]. Human Molecular Genetics, 2006, 15(1):R17-R29. [5] 白凤庭, 李林, 陈军豪, 等.非编码RNA与骨骼肌发育研究进展[J]. 中国畜牧兽医, 2020, 47(11):3584-3594. BAI F T, LI L, CHEN J H, et al.Research progresson non-coding RNA and skeletal muscle development[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(11):3584-3594.(in Chinese) [6] ZHAO Y, CHEN M, LIAN D, et al.Non-coding RNA regulates the myogenesis of skeletal muscle satellite cells injury repair and diseases[J]. Cells, 2019, 8(9):988. [7] ZHU L, HOU L, OU J, et al.miR-199b represses porcine muscle satellite cells proliferation by targeting JAG1[J]. Gene, 2019, 691:24-33. [8] SOUSA M, DOLICKA D, GJORGJIEVA M, et al.Deciphering miRNAs'action through miRNA editing[J]. International Journal of Molecular Sciences, 2019, 20(24):6249. [9] IQBAL A, PING J, ALI S, et al.Role of microRNAs in myogenesis and their effects on meat quality in pig——A review[J]. Asian Australasian Journal of Animal Sciences, 2020, 33(12):1873-1884. [10] WEI J W, HUANG K, YANG C, et al.Non-coding RNAs as regulators in epigenetics (review)[J]. Oncology Reports, 2017, 37(1):3-9. [11] MOHR A M, MOTT J L.Overview of microRNA biology[J]. Seminars in Liver Disease, 2015, 35(1):3-11. [12] KROL J, LOEDIGE I, FILIPOWICZ W.The widespread regulation of microRNA biogenesis, function and decay[J]. Nature Reviews Genetics, 2010, 11(9):597-610. [13] GIL N, ULITSKY I.Regulation of gene expression by cis-acting long non-coding RNAs[J]. Nature Reviews Genetics, 2020, 21(2):102-117. [14] MARCHESE F P, RAIMONDI I, HUARTE M.The multidimensional mechanisms of long noncoding RNA function[J]. Genome Biology, 2017, 18(1):206. [15] QUINN J J, CHANG H Y.Unique features of long non-coding RNA biogenesis and function[J]. Nature Reviews Genetics, 2016, 17(1):47-62. [16] KOPP F, MENDELL J T.Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3):393-407. [17] ST LAURENT G, WAHLESTEDT C, KAPRANOV P.The landscape of long noncoding RNA classification[J]. Trends in Genetics, 2015, 31(5):239-251. [18] JARROUX J, MORILLON A, PINSKAYA M.History, discovery, and classification of lncRNAs[J]. Advances in Experimental Medicine and Biology, 2017, 1008:1-46. [19] MA L, BAJIC V B, ZHANG Z.On the classification of long non-coding RNAs[J]. RNA Biology, 2013, 10(6):925-933. [20] SANGER H L, KLOTZ G, RIESNER D, et al.Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(11):3852-3856. [21] HSU M, COCAPRADOS M.Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720):339-340. [22] LI B, YIN D, LI P, et al.Profiling and functional analysis of circular RNAs in porcine fast and slow muscles[J]. Frontiers in Cell and Developmental Biology, 2020, 8:322. [23] LUO H, LV W, TONG Q, et al.Functional non-coding RNA during embryonic myogenesis and postnatal muscle development and disease[J]. Frontiers in Cell and Developmental Biology, 2021, 9:628339. [24] JECK W R, SORRENTINO J A, WANG K, et al.Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2):141-157. [25] MENG S, ZHOU H, FENG Z, et al.circRNA:Functions and properties of a novel potential biomarker for cancer[J]. Molecular Cancer, 2017, 16(1):94. [26] JECK W R, SHARPLESS N E.Detecting and characterizing circular RNAs[J]. Nature Biotechnology, 2014, 32(5):453-461. [27] 谢月琴, 陈婷, 罗君谊, 等.circRNA作用机制及其对动物肌肉发育的影响[J]. 中国畜牧兽医, 2018, 45(8):2270-2275. XIE Y Q, CHEN T, LUO J Y, et al.Mechanism of circRNA and its effect on development of animal muscles[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(8):2270-2275.(in Chinese) [28] LEGNINI I, DI TIMOTEO G, ROSSI F, et al.circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Molecular Cell, 2017, 66(1):22-37. [29] 郑婷, 甘麦邻, 沈林園, 等.circRNA及其调控动物骨骼肌发育研究进展[J]. 遗传, 2020, 42(12):1178-1191. ZHENG T, GAN M L, SHEN L Y, et al.circRNA on animal skeletal muscle development regulation[J]. Hereditas, 2020, 42(12):1178-1191.(in Chinese) [30] DIALLO L H, TATIN F, DAVID F, et al.How are circRNAs translated by non-canonical initiation mechanisms?[J]. Biochimie, 2019, 164:45-52. [31] HORAK M, NOVAK J, BIENERTOVA-VASKU J.Muscle-specific microRNAs in skeletal muscle development[J]. Developmental Biology, 2016, 410(1):1-13. [32] HE D, ZOU T, GAI X, et al.microRNA expression profiles differ between primary myofiber of lean and obese pig breeds[J]. PLoS One, 2017, 12(7):e0181897. [33] XIE S, LI X, QIAN L, et al.An integrated analysis of mRNA and miRNA in skeletal muscle from myostatin-edited Meishan pigs[J]. Genome, 2019, 62(5):305-315. [34] MAI M, JIN L, TIAN S, et al.Deciphering the microRNA transcriptome of skeletal muscle during porcine development[J]. PeerJ, 2016, 4:e1504. [35] XIE S, CHEN L, ZHANG X, et al.An integrated analysis revealed different microRNA-mRNA profiles during skeletal muscle development between Landrace and Lantang pigs[J]. Scientific Reports, 2017, 7(1):2516. [36] FU L, WANG H, LIAO Y, et al.miR-208b modulating skeletal muscle development and energy homoeostasis through targeting distinct targets[J]. RNA Biology, 2020, 17(5):743-754. [37] GE J, ZHU J, XIA B, et al.miR-423-5p inhibits myoblast proliferation and differentiation by targeting Sufu[J]. Journal of Cell Biochemistry, 2018, 119(9):7610-7620. [38] HOU L, XU J, LI H, et al.miR-34c represses muscle development by forming a regulatory loop with Notch1[J]. Scientific Reports, 2017, 7(1):9346. [39] HOU L, ZHU L, LI H, et al.miR-501-3p forms a feedback loop with FOS, MDFI, and MyoD to regulate C2C12 myogenesis[J]. Cells, 2019, 8(6):573. [40] HOU L, XU J, JIAO Y, et al.miR-27b promotes muscle development by inhibiting MDFI expression[J]. Cell Physiology Biochemistry, 2018, 46(6):2271-2283. [41] MA M, WANG X, CHEN X, et al.microRNA-432 targeting E2F3 and P55PIK inhibits myogenesis through PI3K/Akt/mTOR signaling pathway[J]. RNA Biology, 2017, 14(3):347-360. [42] QIN J, SUN Y, LIU S, et al.microRNA-323-3p promotes myogenesis by targeting Smad2[J]. Journal of Cell Biochemistry, 2019, 120(11):18751-18761. [43] QIU H, ZHONG J, LUO L, et al.Regulatory axis of miR-195/497 and HMGA1-Id3 governs muscle cell proliferation and differentiation[J]. Internal Journal Biology Science, 2017, 13(2):157-166. [44] TANG Z, LIANG R, ZHAO S, et al.CNN3 is regulated by microRNA-1 during muscle development in pigs[J]. Internal Journal Biology Science, 2014, 10(4):377-385. [45] WANG H, SHI L, LIANG T, et al.miR-696 regulates C2C12 cell proliferation and differentiation by targeting CNTFRα[J]. Internal Journal Biology Science, 2017, 13(4):413-425. [46] ZHANG Y, YAN H, ZHOU P, et al.microRNA-152 promotes slow-twitch myofiber formation via targeting uncoupling protein-3 gene[J]. Animals(Basel), 2019, 9(9):669. [47] ZUO J, WU F, LIU Y, et al.microRNA transcriptome profile analysis in porcine muscle and the effect of miR-143 on the MYH7 gene and protein[J]. PLoS One, 2015, 10(4):e0124873. [48] SHEN L, CHEN L, ZHANG S, et al.microRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C(MEF2C) and potentially influences meat quality[J]. Meat Science, 2016, 116:201-206. [49] 李想.miR-208b通过抑制Mettl8表达调控骨骼肌纤维类型转化[D].北京:中国农业科学院, 2020. LI X.miR-208b regulates skeletal muscle fiber types conversion by inhibiting Mettl8 expression[D].Beijing:Chinese Academy of Agricultural Sciences, 2020.(in Chinese) [50] 张勇.microRNA-378b-3p对猪骨骼肌纤维类型转化的调节作用及其机制[D].雅安:四川农业大学, 2018. ZHANG Y.The role of microRNA-378b-3p in regulating porcine skeletal muscle fiber type conversion and its mechanism[D].Ya'an:Sichuan Agricultural University, 2018.(in Chinese) [51] YANG Y, LIANG G, NIU G, et al.Comparative analysis of DNA methylome and transcriptome of skeletal muscle in lean-, obese-, and mini-type pigs[J]. Scientific Reports, 2017, 7:39883. [52] JIN J J, LV W, XIA P, et al.Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(42):E9802-E9811. [53] GUO Y, WANG J, ZHU M, et al.Identification of MyoD-responsive transcripts reveals a novel long non-coding RNA(lncRNA-AK143003) that negatively regulates myoblast differentiation[J]. Scientific Reports, 2017, 7(1):2828. [54] HUANG Z, LI Q, LI M, LI C.Transcriptome analysis reveals the long intergenic noncoding RNAs contributed to skeletal muscle differences between Yorkshire and Tibetan pig[J]. Scientific Reports, 2021, 11(1):2622. [55] TAN Y, GAN M, SHEN L, et al.Profiling and functional analysis of long noncoding RNAs and mRNAs during porcine skeletal muscle development[J]. Internal Journal of Molecular Sciences, 2021, 22(2):503. [56] DEY B K, PFEIFER K, DUTTA A.The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration[J]. Genes & Development, 2014, 28(5):491-501. [57] LI L, CHENG X, CHEN L, et al.Long noncoding ribonucleic acid MSTRG.59589 promotes porcine skeletal muscle satellite cells differentiation by enhancing the function of PALLD[J]. Frontiers in Genetics, 2019, 10:1220. [58] LI R, LI B, JIANG A, et al.Exploring the lncRNAs related to skeletal muscle fiber types and meat quality traits in pigs[J]. Genes(Basel), 2020, 11(8):883. [59] LI J, ZHAO W, LI Q, et al.Long non-coding RNA H19 promotes porcine satellite cell differentiation by interacting with TDP43[J]. Genes(Basel), 2020, 11(3):259. [60] LI J, SU T, ZOU C, et al.Long non-coding RNA H19 regulates porcine satellite cell differentiation through miR-140-5p/SOX4 and DBN1[J]. Frontiers in Cell and Developmental Biology, 2020, 8:518724. [61] 程晓芳.lncRNA-MEG3调控猪骨骼肌卫星细胞分化的机制研究[D].武汉:华中农业大学, 2020. CHENG X F.Mechanisms of lncRNA-MEG3 in regulating the differentiation of porcine satellite cells[D].Wuhan:Huazhong Agricultural University, 2020.(in Chinese) [62] LV W, JIN J, XU Z, et al.lncMGPF is a novel positive regulator of muscle growth and regeneration[J]. Journal of Cachexia Sarcopenia Muscle, 2020, 11(6):1723-1746. [63] WANG S, ZUO H, JIN J, et al.Long noncoding RNA Neat1 modulates myogenesis by recruiting Ezh2[J]. Cell Death Disease, 2019, 10(7):505. [64] ZHANG Z K, LI J, GUAN D, et al.A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration[J]. Journal of Cachexia Sarcopenia Muscle, 2018, 9(3):613-626. [65] ZHOU L, SUN K, ZHAO Y, et al.Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1[J]. Nature Communication, 2015, 6:10026. [66] 李倩倩, 李龙, 黄子莹, 等.猪lncRNA TCONS_00791383对骨骼肌卫星细胞增殖分化的影响[J]. 畜牧兽医学报, 2020, 51(6):1177-1186. LI Q Q, LI L, HUANG Z Y, et al.Effect of pig lncRNA TCONS_00791383 on the proliferation and differentiation of skeletal muscle satellite cells[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6):1177-1186.(in Chinese) [67] YANG R, LIU Y, CHENG Y, et al.Effects and molecular mechanism of single-nucleotide polymorphisms of MEG3 on porcine skeletal muscle development[J]. Frontiers in Genetics, 2021, 12:607910. [68] WANG L, HE T, ZHANG X, et al.Global transcriptomic analysis reveals lnc-ADAMTS9 exerting an essential role in myogenesis through modulating the ERK signaling pathway[J]. Journal Animal Science Biotechnology, 2021, 12(1):4. [69] YUE B, WANG J, SONG C, et al.Biogenesis and ceRNA role of circular RNAs in skeletal muscle myogenesis[J]. International Journal of Biochemistry Cell Biology, 2019, 117:105621. [70] ZHANG P, CHAO Z, ZHANG R, et al.Circular RNA regulation of myogenesis[J]. Cells, 2019, 8(8):885. [71] DAS A, DAS A, DAS D, et al.Circular RNAs in myogenesis[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2020, 1863(4):194372. [72] HONG L, GU T, HE Y, et al.Genome-wide analysis of circular RNAs mediated ceRNA regulation in porcine embryonic muscle development[J]. Frontiers in Cell and Developmental Biology, 2019, 7:289. [73] SUN J, XIE M, HUANG Z, et al.Integrated analysis of non-coding RNA and mRNA expression profiles of 2 pig breeds differing in muscle traits[J]. Journal of Animal Science, 2017, 95(3):1092-1103. [74] LIANG G, YANG Y, NIU G, et al.Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages[J]. DNA Research, 2017, 24(5):523-535. [75] SHEN L, GAN M, TANG Q, et al.Comprehensive analysis of lncRNAs and circRNAs reveals the metabolic specialization in oxidative and glycolytic skeletal muscles[J]. International of Journal Molecular Science, 2019, 20(12):2855. [76] LI H, YANG J, WEI X, et al.circFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J]. Journal of Cell Physiology, 2018, 233(6):4643-4651. [77] LI L, CHEN Y, NIE L, et al.MyoD-induced circular RNA CDR1as promotes myogenic differentiation of skeletal muscle satellite cells[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2019, 1862(8):807-821. [78] YAO R, YAO Y, LI C, et al.circ-HIPK3 plays an active role in regulating myoblast differentiation[J]. International Journal of Biological Macromolecules, 2020, 155:1432-1439. [79] YUE B, WANG J, RU W, et al.The circular RNA circHUWE1 sponges the miR-29b-Akt3 axis to regulate myoblast development[J]. Molecular Therapy-Nucleic Acids, 2020, 19:1086-1097. [80] 曹海港.猪骨骼肌纤维类型关键circRNAs的筛选及circMYLK4的功能研究[D].杨凌:西北农林科技大学, 2019. CAO H G.Screening of key circRNAs in skeletal muscle fiber types of pigs and functional study of circMYLK4[D].Yangling:Northwest A&F University, 2019.(in Chinese) [81] WANG Y, LI M, WANG Y, et al.A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p[J]. International Journal of Biological Macromolecules, 2019, 121:1308-1313. [82] GAO M, LI X, YANG Z, et al.circHIPK3 regulates proliferation and differentiation of myoblast through the miR-7/TCF12 pathway[J]. Journal of Cell Physiology, 2021, 10:1-13. |
[1] | LYU Lingyan, SUN Ruyu, LIN Changhua, ZHANG Shengbin, QIN Xiuzhen, BAI Xiufang, WU Yongshao, CHEN Zhao, LIU Lei, ZHANG Bing, JIANG Jiaxia, ZHANG Jiaqing. Comparative Analysis of miRNA-mRNA Expression Profile in Hypothalamus-Pituitary-Ovary Gonad Axis During Estrus and Anestrus in Gilts [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 2965-2980. |
[2] | JIA Chunyan, SUN Yanyong, BAO Yonghong, ZHANG Wenguang, DU Chenguang. Alternative Splicing Analysis of mRNA and lncRNA Induced by Exogenous Melatonin for Regulating Cashmere Growth Based on Transcriptomics [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3165-3177. |
[3] | NIU Shuran, PAN Jianfeng, RONG Youjun, AO Xiaofang, WANG Yihan, SHANG Fangzheng, WANG Ruijun, ZHANG Yanjun. Advances on the Application of Circular RNA in Important Economic Traits in Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2468-2481. |
[4] | YANG Quan, LI Xiao, YAN Zunqiang, WANG Pengfei, HUANG Xiaoyu, GAO Xiaoli, YANG Qiaoli, GUN Shuangbao, YANG Jiaojiao. Cloning,Bioinformatics Analysis and Tissue Expression of CXCL12 Gene in Hezuo Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2482-2493. |
[5] | REN Hao, ZHU Yixuan, CHAO Tingting, WANG Xiaoyi, LU Shaoxiong, YANG Yongli, CHEN Qiang, LI Mingli. Identification and Functional Prediction of lncRNA in Longissimus Dorsi Muscle of Saba Pigs with Different Growth Rates [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2494-2505. |
[6] | CAO Lihua, LI Huali, REN Huibo, LUO Baoming, LIU Yingying, CUI Qingming, DENG Yuan, ZHU Ji, HU Xionggui, LUO Jianhui, ZUO Jianbo, CHEN Chen, PENG Yinglin. Effects of Gender and Slaughter Weight on Carcass and Meat Quality of Guangyi Black Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2612-2625. |
[7] | LIU Jiayi, WU Hua, SHEN Tong, WANG Kailong, WANG Wensheng, CHEN Zixin. Effects of Extract of Lycium ruthenicum Murr on Growth Performance,Slaughter Performance,Antioxidant Function and Meat Quality of Bamei Ternary Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2637-2649. |
[8] | ZHANG Zhihao, LU Ligang, ZHANG Zijing, WANG Xiangnan, MIN Jia, HAN Yiwei, PENG Shengkun, LUAN Manru, LIU Aobing, SHI Qiaoting, WANG Eryao. Study on the Role of miRNA from Uterine Exosomes in Embryo Development and Implantation of Xianan Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2691-2704. |
[9] | QIN Xiyu, LIU Xiaoxue, CHAI Yi, LAI Mengxuan, REN Xiaomin, ZHANG Depeng, ZHANG Peng, LIJuntao, LI Yixuan, WANG Ran, HAO Yanling, WU Huijuan, WANG Xiaoyu. Establishment and Evaluation of Double Cannulas Model of Duodenal and Terminal Ileum of Bama Minipigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2078-2087. |
[10] | LI Tianxiu, LI Xinpeng, DONG Xinxing, LAN Guoxiang, YAN Dawei, ZHU Jiawei. Amplification,Sequence Analysis and Tissue Expression Study of HMOX2 Gene in Lijiang Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2219-2231. |
[11] | MIAO Na, QIAO Jiakun, YANG Hui, HAN Pingping, XU Fangjun, CHE Zhaoxuan, DAI Xiangyu, XU Minghang, LONG Zhiwei, ZHU Mengjin. Genome Wide Association Study of Immune Traits in Duroc×Erhualian F2 Generation Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1455-1467. |
[12] | HU Huihui, FU Panpan, LI Jie, YAN Zunqiang, GAO Xiaoli, YANG Jiaojiao, HUANG Xiaoyu. Cloning,Identification and Tissue Expression Analysis of TRIF Gene CDS Region in Hezuo Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1478-1487. |
[13] | JIANG Chenxi, CHENG Sufang, WU Guozao, CHEN Juan, GAO Xiaona, GUO Xiaoquan, LIU Ping. Research Progress on the Role of Pulmonary Artery Endothelial Cells in Broiler Ascites Syndrome and the Regulation Mechanism of miRNA [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1522-1532. |
[14] | HE Xiaofei, LEI Yuhang, ZHU Li, GAN Mailin, SHEN Linyuan. Research Progress on circRNA Regulating Fat Deposition in Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1627-1638. |
[15] | LI Zhiyi, LI Jie, CHEN Chuwen, NONG Yi, WANG Jiayan, WANG Zi, WU Jinbo, LI Zhixiong. Analysis and Identification of miRNA in Leg Muscle Tissue of Tibetan Chicken Embryos at Different Developmental Stages [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1681-1693. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||