China Animal Husbandry & Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (2): 581-591.doi: 10.16431/j.cnki.1671-7236.2021.02.020
• Genetics and Breeding • Previous Articles Next Articles
WANG Xiaoyue, MIAO Jialin, DONG Xusheng, WANG Zhonghua, LIN Xueyan, WANG Yun, HOU Qiuling
Received:
2020-06-28
Online:
2021-02-20
Published:
2021-02-23
CLC Number:
WANG Xiaoyue, MIAO Jialin, DONG Xusheng, WANG Zhonghua, LIN Xueyan, WANG Yun, HOU Qiuling. Advances in Animal Mammary Stem Cell Research[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(2): 581-591.
[1] HENNIGHAUSEN L,ROBINSON G W.Information networks in the mammary gland[J].Nature Reviews Molecular Cell Biology,2005,6(9):715-725. [2] FU N,NOLAN E,LINDEMAN G J,et al.Stem cells and the differentiation hierarchy in mammary gland development[J].Physiological Reviews,2020,100(2):489-523. [3] DEOME K B,FAULKIN L J,BERN H A,et al.Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice[J].Cancer Research,1959,19(5):515-520. [4] HOSHINO K,GARDNER W U.Transplantability and life span of mammary gland during serial transplantation in mice[J].Nature,1967,213(5072):193-194. [5] DANIEL C W,DEOME K B,YOUNG J T,et al.The in vivo life span of normal and preneoplastic mouse mammary glands:A serial transplantation study[J].Proceedings of the National Academy of Sciences of the United States of America,1968,61(1):53-60. [6] SMITH G H,MEDINA D.A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland[J].Journal of Cell Science,1988,90(Pt 1):173-183. [7] FU N,RIOS A C,PAL B,et al.Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive[J].Nature Cell Biollogy,2017,19(3):164-176. [8] CAI S,KALISKY T,SAHOO D,et al.A quiescent bcl11b high stem cell population is required for maintenance of the mammary gland[J].Cell Stem Cell,2017,20(2):247-260. [9] RIOS A C,FU N Y,LINDEMAN G J,et al.In situ identification of bipotent stem cells in the mammary gland[J].Nature,2014,506(7488):322-327. [10] WANG D,CAI C,DONG X,et al.Identification of multipotent mammary stem cells by protein C receptor expression[J].Nature,2015,517(7532):81-84. [11] SPIKE B T,KELBER J A,BOOKER E,et al.CRIPTO/GRP78 signaling maintains fetal and adult mammary stem cells ex vivo[J].Stem Cell Reports,2014,2(4):427-439. [12] NGUYEN L V,MAKAREM M,CARLES A,et al.Clonal analysis via barcoding reveals diverse growth and differentiation of transplanted mouse and human mammary stem cells[J].Cell Stem Cell,2014,14(2):253-263. [13] VAN KEYMEULEN A,ROCHA A S,OUSSET M,et al.Distinct stem cells contribute to mammary gland development and maintenance[J].Nature,2011,479(7372):189-193. [14] WUIDART A,SIFRIM A,FIORAMONTI M,et al.Early lineage segregation of multipotent embryonic mammary gland progenitors[J].Nature Cell Biollogy,2018,20(6):666-676. [15] LILJA A M,RODILLA V,HUYGHE M,et al.Clonal analysis of notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland[J].Nature Cell Biollogy,2018,20(6):677-687. [16] DONATI G,WATT F M.Stem cell heterogeneity and plasticity in epithelia[J].Cell Stem Cell,2015,16(5):465-476. [17] INGTHORSSON S,BRIEM E,BERGTHORSSON J T,et al.Epithelial plasticity during human breast morphogenesis and cancer progression[J].Journal of Mammary Gland Biology and Neoplasia,2016,21(3-4):139-148. [18] CHAKRABARTI R,CELI-TERRASSA T,KUMAR S,et al.Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche[J].Science,2018,360(6396):eaan4153. [19] CORSA A S,MACDOUGALD O A.Cyclical dedifferentiation and redifferentiation of mammary adipocytes[J].Cell Metabolism,2018,28(2):187-189. [20] WANG Q A,SONG A,CHEN W,et al.Reversible de-differentiation of mature white adipocytes into preadipocyte-like precursors during lactation[J].Cell Metabolism,2018,28(2):282-288. [21] FRANK-KAMENETSKII A,BOOTH B W.Redirec-ting normal and cancer stem cells to a mammary epithelial cell fate[J].Journal of Mammary Gland Biology and Neoplasia,2019,24(4):285-292. [22] SCHEELE C L,HANNEZO E,MURARO M J,et al.Identity and dynamics of mammary stem cells during branching morphogenesis[J].Nature,2017,542(7641):313-317. [23] HOVEY R C,TROTT J F,VONDERHAAR B K.Establishing a framework for the functional mammary gland:From endocrinology to morphology[J].Journal of Mammary Gland Biology and Neoplasia,2002,7(1):17-38. [24] HENS J R,WYSOLMERSKI J J.Key stages of mammary gland development:Molecular mechanisms involved in the formation of the embryonic mammary gland[J].Breast Cancer Research,2005,7(5):220-224. [25] LU P,STERNLICHT M D,WERB Z.Comparative mechanisms of branching morphogenesis in diverse systems[J].Journal of Mammary Gland Biology and Neoplasia,2006,11(3-4):213-228. [26] VELTMAAT J M,MAILLEUX A A,THIERY J P,et al.Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation[J].Differentiation,2003,71(1):1-17. [27] ROBINSON G W.Cooperation of signalling pathways in embryonic mammary gland development[J].Nature Reviews Genetics,2007,8(12):963-972. [28] WATSON C J,KHALED W T.Mammary development in the embryo and adult:A journey of morphogenesis and commitment[J].Development,2008,135(6):995-1003. [29] LU P,EWALD A J,MARTIN G R,et al.Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis[J].Developmental Biology,2008,321(1):77-87. [30] INMAN J L,ROBERTSON C,MOTT J D,et al.Mammary gland development:Cell fate specification,stem cells and the microenvironment[J].Development,2015,142(6):1028-1042. [31] VISVADER J E,STINGL J.Mammary stem cells and the differentiation hierarchy:Current status and perspectives[J].Genes & Development,2014,28(11):1143-1158. [32] ZHOU J,CHEN Q,ZOU Y,et al.Stem cells and cellular origins of mammary gland:Updates in rationale,controversies,and cancer relevance[J].Stem Cells International,2019,2019:4247168. [33] KREUZALER P A,STANISZEWSKA A D,LI W,et al.Stat3 controls lysosomal-mediated cell death in vivo[J].Nature Cell Biology,2011,13(3):303-309. [34] SARGEANT T J,LLOYD-LEWIS B,RESEMANN H K,et al.Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization[J].Nature Cell Biology,2014,16(11):1057-1068. [35] CAPUCO A V,WOOD D L,BALDWIN R,et al.Mammary cell number,proliferation,and apoptosis during a bovine lactation:Relation to milk production and effect of bST[J].Journal of Dairy Science,2001,84(10):2177-2187. [36] CROSSMAN J,ELYASI M,EL-BIALY T,et al.Cementum regeneration using stem cells in the dog model:A systematic review[J].Archives of Oral Biology,2018,91:78-90. [37] MACIAS H,HINCK L.Mammary gland development[J].Wiley Interdisciplinary Reviews Developmental Biology,2012,1(4):533-557. [38] CHEPKO G,SMITH G H.Mammary epithelial stem cells:Our current understanding[J].Journal of Mammary Gland Biology and Neoplasia,1999,4(1):35-52. [39] CHEPKO G,SMITH G H.Three division-competent,structurally distinct cell populations contribute to murine mammary epithelial renewal[J].Tissue Cell,1997,29(2):239-253. [40] WELM B E,TEPERA S B,VENEZIA T,et al.Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population[J].Developmental Biology,2002,245(1):42-56. [41] ZEPS N,BENTEL J M,PAPADIMITRIOU J M,et al.Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth[J].Differentiation,1998,62(5):221-226. [42] SMITH G H.Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands[J].Devlopment,2005,132(4):681-687. [43] CAPUCO A V,CHOUDHARY R K.Symposium review:Determinants of milk production:Under-standing population dynamics in the bovine mammary epithelium[J].Journal of Dairy Science,2020,103(3):2928-2940. [44] BUSSARD K M,BOULANGER C A,KITTRELL F S,et al.Immortalized,premalignant epithelial cell populations contain long-lived,label-retaining cells that asymmetrically divide and retain their template DNA[J].Breast Cancer Research,2010,12(5):R86. [45] BORAS-GRANIC K,DANN P,WYSOLMERSKI J J.Embryonic cells contribute directly to the quiescent stem cell population in the adult mouse mammary gland[J].Breast Cancer Research,2014,16(6):487. [46] RAGLE L E,BRUNO R D,BOULANGER C A,et al.Long-label-retaining mammary epithelial cells are created early in ductal development and distributed throughout the branching ducts[J].Mechanisms of Ageing and Development,2019,159:103565. [47] ZHOU S,SCHUETZ J D,BUNTING K D,et al.The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype[J].Nature Medicine,2001,7(9):1028-1034. [48] BUNTING K D.ABC transporters as phenotypic markers and functional regulators of stem cells[J].Stem Cells,2002,20(1):1120. [49] ALVI A J,CLAYTON H,JOSHI C,et al.Functional and molecular characterisation of mammary side population cells[J].Breast Cancer Research,2003,5(1):R1-R8. [50] SHACKLETON M,VAILLANT F,SIMPSON K J,et al.Generation of a functional mammary gland from a single stem cell[J].Nature,2006,439(7072):84-88. [51] STINGL J,EAVES C J,WATSON C J.Phenotypic characterization of mouse mammary epithelial stem and progenitor cells[J].Breast Cancer Research,2006,8:S1-S20. [52] LAURENCE F,ERIC C,FREDERIC D.Molecular signature of the putative stem/progenitor cells committed to the development of the bovine mammary gland at puberty[J].Scientific Reports,2018,8(1):16194. [53] RAUNER G,LEDET M M,VAN DE WALLE G R.Conserved and variable:Understanding mammary stem cells across species[J].Cytometry Part A,2018,93(1):125-136. [54] DOS SANTOS C O,REBBECK C,ROZHKOVA E,et al.Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(18):7123-7130. [55] STINGL J,EIREW P,RICKETSON I,et al.Purification and unique properties of mammary epithelial stem cells[J].Nature,2006,439(7079):993-997. [56] ASSELIN-LABAT M L,SHACKLETON M,STINGL J,et al.Steroid hormonereceptor status of mouse mammary stem cells[J].Journal of the National Cancer Institute,2006,98(14):1011-1014. [57] SHEHATA M,TESCHENDORFF A,SHARP G,et al.Phenotypicand functional characterization of the luminal cell hierarchy of themammary gland[J].Breast Cancer Research,2012,14(5):R134. [58] FU N,LINDEMAN G J,VISVADER J E.The mammary stem cell hierarchy[J].Current Topics in Developmental Biology,2014,107:133-160. [59] EIREW P,STINGL J,RAOUF A,et al.A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability[J].Nature Medicine,2008,14(12):1384-1389. [60] LIM E,VAILLANT F,WU D,et al.Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers[J].Nature Medicine,2009,15(8):907-913. [61] STINGL J,EIREW P,RICKETSON I,et al.Purification and unique properties of mammaryepi-thelial stem cells[J].Nature,2006,439(7079):993-997. [62] MAKAREM M,KANNAN N,NGUYEN L V,et al.Developmental changes in the in vitro activated regenerative activity of primitive mammary epithelial cells[J].PLoS Biology,2013,11(8):e1001630. [63] PRATER M D,PETIT V,ALASDAIR RUSSELL I,et al.Mammary stem cells have myoepithelial cell properties[J].Nature Cell Biology,2014,16(10):942-950. [64] CODEGA P,SILVA-VARGAS V,PAUL A,et al.Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche[J].Neuron,2014,82(3):545-559. [65] FOUDI A,HOCHEDLINGER K,BUREN D V,et al.Hock analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells[J].Nature Biotechnology,2009,27(1):84-90. [66] WILSON A E,LAURENTI G,OSER R C,et al.Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair[J].Cell,2008,135(6):1118-1129. [67] PECE S,TOSONI D,CONFALONIERI S,et al.Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content[J].Cell,2010,140(1):62-73. [68] FINOT L,CHANAT E,DESSAUGE F.Mammary epithelial cell lineage changes during cow's life[J].Journal of Mammary Gland Biology and Neoplasia,2019,24(2):185-197. [69] SCHEPERS A G,SNIPPERT H J,STANGE D E,et al.Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas[J].Science,2012,337(6095):730-735. [70] ROHRSCHNEIDER L R,CUSTODIO J M,ANDERSON T A,et al.The intron 5/6 promoter region of the ship1 gene regulates expression in stem/progenitor cells of the mouse embryo[J].Developmental Biology,2005,283(2):503-521. [71] BAI L,ROHRSCHNEIDER L R.s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue[J].Genes & Development,2010,24(17):1882-1892. [72] LUSTIG B,JERCHOW B,SACHS M,et al.Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors[J].Molecular and Cellular Biology,2002,22(4):1184-1193. [73] OLABI S,UCAR A,BRENNAN K,et al.Integrin-Rac signalling for mammary epithelial stem cell self-renewal[J].Breast Cancer Research,2018,20(1):128. [74] ZENG Y A,NUSSE R.Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture[J].Cell Stem Cell,2010,6(6):568-577. [75] VAN AMERONGEN R,BOWMAN A N,NUSSE R.Developmental stage and time dictate the fate of Wnt/β-Catenin-responsive stem cells in the mammary gland[J].Cell Stem Cell,2012,11(3):387-400. [76] BLANPAIN C,FUCHS E.Plasticity of epithelial stem cells in tissue regeneration[J].Science,2014,344(6189):1242281. [77] RODILLA V,DASTI A,HUYGHE M,et al.Luminal progenitors restrict their lineage potential during mammary gland development[J].PLoS Biology,2015,13(20):e1002069. [78] SCHEELE C L,HANNEZO E,MURARO M J,et al.Identity and dynamics of mammary stem cells during branching morphogenesis[J].Nature,2017,542(7641):313-317. [79] DAVIS F M,LLOYD-LEWIS B,HARRIS O B,et al.Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny[J].Nature Communications,2016,7:13053. [80] BLAAS L,PUCCI F,MESSAL H A,et al.Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours[J].Nature Cell Biology,2016,18(12):1346-1356. [81] VAN KEYMEULEN A,FIORAMONTI M,CENTONZE A,et al.Lineage-restricted mammary stem cells susta in the development,homeostasis,and regeneration of the estrogen receptor positive lineage[J].Cell Reports,2017,20(7):1525-1532. [82] SMITH G H,MEDINA D.Does the mouse mammary gland arise from unipotent or multipotent mammary stem/progenitor cells?[J].Journal of Mammary Gland Biology and Neoplasia,2018,23(1-2):1-3. [83] LEE E,PIRANLIOGLU R,WICHA M S,et al.Plasticity and potency of mammary stem cell subsets during mammary gland development[J].International Journal of Molecular Sciences,2019,20(9):2357. [84] SPIKE BT,ENGLE D D,LIN J C,et al.A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer[J].Cell Stem Cell,2012,10(2):183-197. [85] WANSBURY O,MACKAY A,KOGATA N,et al.Transcriptome analysis of embryonic mammary cells reveals insights into mammary lineage establishment[J].Breast Cancer Research,2011,13(4):R79. [86] LLOYD-LEWIS B,DAVIS F M,HARRIS O B,et al.Neutral lineage tracing of proliferative embryonic and adult mammary stem/progenitor cells[J].Development,2018,145(14):dev164079. [87] CHEPKO G,DICKSON R B.Ultrastructure of the putative stem cell niche in rat mammary epithelium[J].Tissue Cell,2003,35(2):83-93. [88] PAINE G,CHAUVIERE A,LANDUA J,et al.A geometrically-constrained mathematical model of mammary gland ductal elongation reveals novel cellular dynamics within the terminal end bud[J].PLoS Computational Biology,2016,12(4):e1004839. [89] SREEKUMAR A,ROARTY K,ROSEN J M,et al.The mammary stem cell hierarchy:A looking glass into heterogeneous breast cancer landscapes[J].Endocrine-related Cancer,2015,22(6):T161-T176. [90] WILLIAMS I M,DANIEL C W.Mammary ductal elongation:Differentiation of myoepithelium and basal lamina during branching morphogenesis[J].Developmental Biology,1983,97(2):274-290. [91] SRINIVASAN K,STRICKLAND P,VALDES A,et al.Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morpho-genesis[J].Developmental Biology,2003,4(3):371-382. [92] BRISKEN C,MALLEY B O.Hormone action in the mammary gland[J].Cold Spring Harbor Perspectives in Biology,2010,2(12):a003178. [93] SREEKUMAR A,TONEFF M J,TOH E,et al.WNT-mediated regulation of FOXO1 constitutes a critical axis maintaining pubertal mammary stem cell homeostasis[J].Developmental Cell,2017,43(4):436-448. [94] FU N,PAL B,CHEN Y,et al.Foxp1 is indispensable for ductal morphogenesis and controls the exit of mammary stem cells from quiescence[J].Develop-mental Cell,2018,47(5):629-644. [95] SONG W,WANG R,JIANG W,et al.Hormones induce the formation of luminal-derived basal cells in the mammary gland[J].Cell Research,2019,29(3):206-220. [96] FINOT L,CHANAT E,DESSAUGE F.Molecular signature of the putative stem/progenitor cells committed to the development of the bovine mammary gland at puberty[J].Scientific Reports,2018,8:16194. |
[1] | DAI Lin, HUAI Zhifang, WANG Baowei, ZHANG Ming'ai, FAN Wenlei, ZHANG Jing, WANG Binghan, QI Guofeng. Isolation, Identification and Biological Properties and Safety of A Lactiplantibacillus plantarum Strain [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3070-3083. |
[2] | LU Chong, WANG Yuyan, FU Han, LI Tongyang, MIAO Ronghao, LU Yabin, LI Jianlong, LIU Jianhua, GUO Qingyong, MAI Zhanhai, KUANG Ling. Isolation and Identification of the Main Pathogenic Bacteria of Aborted Yili Foals and Their Pathogenicity [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3344-3358. |
[3] | ZHAO Yilong, TANG Na, JING Changhua, XU Qingqing, YIN Xiusheng, WANG Haiming, SUN Jing, LIN Panpan, DONG Lin, LIU Jishan, CAO Rongfeng. Isolation,Identification and Biological Characteristics of a Strain of Lumpy Skin Disease Virus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2790-2799. |
[4] | YANG Qinhong, YANG Jia, DUAN Wenjie, ZHANG Yongxian, ZHU Youshuai, YANG Shaohong, HE Cheng, YIN Hongbin, LI Suhua. Isolation and Identification of a High-temperature Tolerant Bacillus thermoamylovorans and Optimization of Its Enzyme Production Conditions [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2839-2850. |
[5] | JIA Yuxuan, LI Yaojiang, ZENG Guanghu, SHEN Xiangyu, GONG Ting. Isolation,Culture and Identification of Testicular Spermatogenic Cells from Congjiang Xiang Pig [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2198-2207. |
[6] | WU Peng, YUAN Yang, YANG Yunyun, FENG Yi, WANG Yan, YANG Ying, CHEN Jiangfeng, JIANG Haibo, WEN Ming. Diagnosis and Pathogen Identification of a Case of Mixed Infection of Duck Plague Virus and Pasteurella multocida in Breeding Goose [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2253-2265. |
[7] | WU Yue, SHI Xingya, ZHANG Shuai, ZHAO Yunhuan, GUO Liming, ZUO Yuzhu, FAN Jinghui. Isolation and Identification of Porcine Pseudorabies Virus and Genetic Evolution Analysis of gE and gC Genes [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2266-2277. |
[8] | YU Kun, ZHAO Jie, MA Qin, SHI Yanhong, ZHANG Xiao, LIU Zihan, ZHANG Xinting, WANG Jianhua, LI Yufeng. Isolation,Identification,Drug Resistance and Pathogenicity Analysis of Salmonella Enteritidis from Commercial Meat Ducks [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2353-2363. |
[9] | LONG Baoqin, WANG Huixiang, YU Linjin, HAERLEHA·Amantai, CHEN Haoran, XU Mengjiao, SHI Longxing, LI Youwen. Isolation,Identification and Biological Characteristics Analysis of Two Strains of Klebsiella pneumoniae from Quail [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2364-2378. |
[10] | WU Jiaxin, SUN Yue, MAO Wei, LIU Shuying, YIN Kaiwen, ZHANG Zhidan, HAN Kaifan, ZHAO Hongxia. Isolation and Identification of Mannheimia haemolytica from Sheep Respiratory Tract and Its Pathogenicity and Drug Resistance [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2421-2431. |
[11] | LI Yongjian, ZHANG Runze, WU You, ZHAO Pengfei, JIAO Longling, ZHOU Ming, QI Yayin, REN Jingjing. Isolation,Identification and Probiotic Characteristics Analysis of Bacillus subtilis from Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1590-1602. |
[12] | CHEN Zuoxin, CHEN Yuxin, PAN Yanlin, HUANG Yunzhen, LI Linlin, DONG Jiawen, XIANG Yong, XU Zhihong, SUN Minhua, ZHANG Junqin, HUANG Shujian, LIAO Ming. Isolation,Identification and Pathogenicity of Two Strains of Cluster 3 Goose Tembusu Virus [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1750-1762. |
[13] | WURI Lige, LI Na, GERILE Gelaba, HASI Tuya, ZHANG Jingjing, HOU Bin, HASI Surong. Molecular Identification of the Pathogen of Paramphistomiasis in Ordos Fine-wool Sheep and Screening of Deworming Drugs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1807-1814. |
[14] | LIN Bingbing, ZHAO Hongzhe, GUAN Na, WU Rigumula, QI Gen, ZHANG Yang, WEN Yongjun, WANG Fengxue. Isolation,Identification and Drug Resistance Analysis of Clostridium perfringens from Cattle in Some Areas of Inner Mongolia [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1873-1883. |
[15] | HE Yuxuan, CIRING Zhuoma, WANG Yu, LIU Huaizhi, YANG Jinpeng, WEI Mingbang, SHANG Peng. Isolation and Identification of Tibetan Pig-derived Enterococcus faecalis and Detection of Drug Resistance and Virulence Genes [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1895-1904. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||