中国畜牧兽医 ›› 2021, Vol. 48 ›› Issue (12): 4575-4587.doi: 10.16431/j.cnki.1671-7236.2021.12.026
房瑞新1,2, 田雪琪1, 邹晨1,2, 董依萌1, 刘欣2, 邢秀梅1
修回日期:
2021-06-23
出版日期:
2021-12-20
发布日期:
2021-12-02
通讯作者:
邢秀梅
E-mail:xingxiumei2004@126.com
作者简介:
房瑞新(1996-),女,山东德州人,硕士,研究方向:特种经济动物饲养,E-mail:fangruixin0124@163.com
基金资助:
FANG Ruixin1,2, TIAN Xueqi1, ZOU Chen1,2, DONG Yimeng1, LIU Xin2, XING Xiumei1
Revised:
2021-06-23
Online:
2021-12-20
Published:
2021-12-02
摘要: 马鹿是非常重要的物种资源,由于栖息地的流失和人为干扰进行近亲繁殖等导致野生马鹿数量急剧减少,而家养马鹿多经过改良,因此马鹿的纯种数量锐减。对马鹿进行分子遗传学研究不仅可以加深人们对马鹿起源和物种形成的认识,还能帮助开展遗传多样性保护研究。随着高通量测序技术、分子生物学和生物信息学的迅速发展,马鹿的起源进化研究已发展到全基因组水平,并取得了一定的成果。马鹿的起源进化研究从最初对体态外貌和染色体核型的研究逐渐发展到对DNA序列与生理指标的研究。文章回顾了近年来国内外对马鹿起源进化和遗传多样性方面的研究,从起源时间、起源地和迁徙路线等方面揭示了马鹿的演化历史,介绍了父系、母系和常染色体研究方面分析了马鹿遗传多样性选取的不同分子标记,为进一步揭示马鹿种群的遗传变异、分化情况、迁徙路线和系统发育关系等提供基础信息,同时为马鹿遗传资源的利用和保护以及马鹿产业的良性发展提供重要的借鉴与参考。
中图分类号:
房瑞新, 田雪琪, 邹晨, 董依萌, 刘欣, 邢秀梅. 马鹿的起源进化与遗传多样性研究进展[J]. 中国畜牧兽医, 2021, 48(12): 4575-4587.
FANG Ruixin, TIAN Xueqi, ZOU Chen, DONG Yimeng, LIU Xin, XING Xiumei. Research Advances on the Origin, Evolution and Genetic Diversity of Red Deer (Cervus elaphus)[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4575-4587.
[1] 马逸清,赵裕方,于月明.马鹿的生物学特性和亚种分类[J].国土与资源研究,1998,1:63-66. MA Y Q,ZHAO Y F,YU Y M.Biological characteristics and subspecies classification of red deer[J].China Academic Journal Publishing House,1998,1:63-66.(in Chinese) [2] 李顺才,杜利强,安瑞永.中国野生马鹿资源的保护与利用[J].草业科学,2008,25(4):82-85. LI S C,DU L Q,AN R Y.Conservation and utilization of wild Cervus elaphus resource in China[J].Pratacultural Science,2008,25(4):82-85.(in Chinese) [3] GEIST V.Deer of the World:Their Evolution,Behaviour,and Ecology[M].UK:Swan Hill Press,1999. [4] 费辽罗夫K K.鹿总科在其进化过程中的形态学和生态学[J].古生物译报,1957,1-2:2-16. FLEROV K K.Morphology and ecology of Cervidae during its evolutionary[J].Journal of Palaeontology Translation,1957,1-2:2-16.(in Chinese) [5] 王宗仁,杜若甫.鹿属(Cervus)染色体组型的进化[J].遗传学报,1982,1:24-31. WANG Z R,DU R F.Evolution of karyotype of the genus Cervus[J].Acta Genetica Sinica,1982,1:24-31.(in Chinese) [6] 王宗仁,杜若甫.鹿科动物的染色体组型及其进化[J].动物学报,1983,3:214-222. WANG Z R,DU R F.Karyotypes of Cervidae and their evolution[J].Current Zoology,1983,3:214-222.(in Chinese) [7] RANDI E,MUCCI N,PIERPAOLI M,et al.New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene[J].Proceedings of the Royal Society B:Biological Sciences,1998,265(1398):793-801. [8] HU P F,SHAO Y C,XU J P,et al.Genome-wide study on genetic diversity and phylogeny of five species in the genus Cervus[J].BMC Genomics,2019,20(1):384. [9] COOK C E,WANG Y,SENSABAUGH G.A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region[J].Molecular Phylogenetics & Evolution,1999,12(1):47-56. [10] 李 明,王小明,盛和林,等.四种鹿属动物的线粒体DNA差异和系统进化关系研究[J].动物学报,1999,45(1):99-105. LI M,WANG X M,SHENG H L,et al.Mitochondrial DNA divergence and phylogeny of four species of deer of the genus Cervus[J].Current Zoology,1999,45(1):99-105.(in Chinese) [11] KUWAYAMA R,OZAWA T.Phylogenetic relationships among European red deer,wapiti,and sika deer inferred from mitochondrial DNA sequences[J].Molecular Phylogenetics & Evolution,2000,15(1):115-123. [12] 邓铸疆,任战军,熊建杰,等.西北马鹿群体遗传多样性及系统地位[J].西北农林科技大学学报(自然科学版),2010,38(9):42-46. DENG Z J,REN Z J,XIONG J J,et al.Genetic diversity and classification status of wapiti (red deer) in Northwest of China[J].Journal of Northwest A&F University (Natural Science Edition),2010,38(9):42-46.(in Chinese) [13] LUDT C J,SCHROEDER W,ROTTMANN O,et al. Mitochondrial DNA phylogeography of red deer (Cervus elaphus)[J].Molecular Phylogenetics and Evolution,2004,31(3):1064-1083. [14] 大泰司纪之.中国鹿类动物[M].上海:华东师范大学出版社,1992. OHTAISHI N.The Deer of China[M].Shanghai:East China Normal University Press,1992.(in Chinese) [15] GILBERT C,ROPIQUET A,HASSANIN A.Mitochondrial and nuclear phylogenies of Cervidae (Mammalia,Ruminantia):Systematics,morphology,and biogeography[J].Molecular Phylogenetics and Evolution,2006,40(1):101-117. [16] HALIK M,RYUICHI M,MANABU O.Molecular phylogeography of the red deer (Cervus elaphus) populations in Xinjiang of China:Comparison with other Asian,European,and North American populations[J].Zoological Science,2002,19(4):485-495. [17] HARTL G B,ZACHOS F,NADLINGER K.Genetic diversity in European red deer (Cervus elaphus L.):Anthropogenic influences on natural populations[J].Comptes Rendus Biologies,2003,326(1):37-42. [18] DAVID W G,MULVILLE J A,BRUFORD M W.Colonization of the Scottish islands via long-distance Neolithic transport of red deer (Cervus elaphus)[J].Biological Sciences,2016,283:1828-1838. [19] ESPONA S P,WILLIAM P G,ANNA S,et al.First assessment of MHC diversity in wild Scottish red deer populations[J].European Journal of Wildlife Research,2019,65(2):22. [20] SKOG A,ZACHOS F E,RUENESS E K,et al.Phylogeography of red deer (Cervus elaphus) in Europe[J].Journal of Biogeography,2009,36:66-77. [21] ZACHOS F E,FRANTZ A C,KEUHN R,et al.Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale:Insights from microsatellite DNA[J].The Journal of Heredity,2016,107(4):318-326. [22] REY L A,AURORA G A,CAMPOS P F,et al.Mitochondrial DNA of pre-last glacial maximum red deer from NW Spain suggests a more complex phylogeographical history for the species[J].Ecology and Evolution,2017,7(24):10690-10700. [23] ZACHOS F E,HARTL G B.Phylogeography,population genetics and conservation of the European red deer Cervus elaphus[J].Mammal Review,2011,41(2):138-150. [24] BANKS W E,ERRICO F,PETERSON A T,et al.Reconstructing ecological niches and geographic distributions of caribou (Rangifer tarandus) and red deer (Cervus elaphus) during the last glacial maximum[J].Quaternary Science Reviews,2008,27(27):2568-2575. [25] QUEIROS J,ACEVEDO P,SANTOS J P V,et al.Red deer in Iberia:Molecular ecological studies in a Southern refugium and inferences on European postglacial colonization history[J].PLoS One,2019,14(1):e0210282. [26] MAGDALENA N,BOGUMILA J,CHRISTIN A H,et al.Molecular biogeography of red deer Cervus elaphus from Eastern Europe:Insights from mitochondrial DNA sequences[J].Acta Theriologica,2011,56(1):66-77. [27] OLIVIERI C,MAROTA I,RIZZI E,et al.Positioning the red deer (Cervus elaphus) hunted by the Tyrolean Iceman into a mitochondrial DNA phylogeny[J].PLoS One,2014,9(7):e100136. [28] GYLLENSTEN U,RYMAN N,REUTERWALL C,et al.Genetic differentiation in four European subspecies of red deer (Cervus elaphus L.)[J].Heredity,1983,51:561-580. [29] CARRANZA J,SALINAS M,ANDRES D,et al.Iberian red deer:Paraphyletic nature at mtDNA but nuclear markers support its genetic identity[J].Ecology and Evolution,2016,6(4):905-922. [30] DOAN K,ZACHOS F E,WILKENS B,et al.Phylogeography of the Tyrrhenian red deer (Cervus elaphus corsicanus) resolved using ancient DNA of radiocarbon-dated subfossils[J].Scientific Reports,2017,7(1):2331. [31] BA H X,CAI Z X,GAO H Y,et al.Chromosome-level genome assembly of Tarim red deer,Cervus elaphus yarkandensis[J].Scientific Data,2020,7(1):187. [32] 李秋艳,邓铸疆,任战军,等.新疆马鹿群体遗传多样性及起源进化研究[J].中国草食动物科学,2013,4:10-13. LI Q Y,DENG Z J,REN Z J,et al.Genetic diversity,origin and evolution of wapiti(red deer)in Xinjiang[J].China Herbivore Science,2013,4:10-13.(in Chinese) [33] KRISZTIAN F,BARTA E,BANA N,et al.Complete mitochondrial genome sequence of a Hungarian red deer (Cervus elaphus hippelaphus) from high-throughput sequencing data and its phylogenetic position within the family Cervidae[J].Acta biologica Hungarica,2016,67(2):133-147. [34] 涂剑锋,徐佳萍,王洪亮,等.基于线粒体DNA控制区序列分析我国马鹿5个亚种的遗传分化[J].华北农学报,2018,33(S1):83-87. TU J F,XU J P,WANG H L,et al.Genetic differentiation of five subspecies wapiti in China based on mitochondrial DNA control region sequences[J].Acta Agriculturae Boreali-Sinica,2018,33(S1):83-87.(in Chinese) [35] ZHANG W Q,ZANG M H.Phylogeny and evolution of Cervidae based on complete mitochondrial genomes[J].Genetics and Molecular Research,2012,11(1):628-35. [36] 李 明,王小明,盛和林,等.马鹿四个亚种的起源和遗传分化研究[J].动物学研究,1998,3:3-5. LI M,WANG X M,SHENG H L,et al.Origin and genetic diversity of four subspecies of red deer (Cervus elaphus)[J].Zoological Research,1998,3:3-5.(in Chinese) [37] 邢秀梅,杨福合,张兆刚,等.中国马鹿线粒体DNA多态性分析[A].中国畜牧业协会[C].2013. XING X M,YANG F H,ZHANG Z G,et al.Analyzing the genetic diversity of wapiti of China[A].China Academic Journal Electronic Publishing House[C].2013.(in Chinese) [38] ABABAIKERI B,ABDURIYIM S,TOHETAHONG Y,et al.Whole-genome sequencing of Tarim red deer (Cervus elaphus yarkandensis) reveals demographic history and adaptations to an arid-desert environment[J].Frontiers in Zoology,2020,17:31-46. [39] DELLICOUR S,PRUNIER J G,SYLVAIN P,et al.Landscape genetic analyses of Cervus elaphus and Sus scrofa:Comparative study and analytical developments[J].Heredity,2019,123(11):228-241. [40] BIENIEK M K,BORKOWSKI J,PANASIEWICZ G,et al.Impact of conservation and hunting on big game species:Comparison of the genetic diversity of the red deer population groups from a national park and neighboring hunting areas in Northern Poland[J].The European Zoological Journal,2020,87(1):603-615. [41] QUEIROS J,GORTAZAR C,ALVES P C.Deciphering anthropogenic effects on the genetic background of the red deer in the Iberian peninsula[J].Frontiers in Ecology and Evolution,2020,8:147. [42] HOFFMANN G S,HOHANNESEN J,GRIEBELER E M.Population dynamics of a natural red deer population over 200 years detected via substantial changes of genetic variation[J].Ecology and Evolution,2016,6(10):3146-3153. [43] MEREDITH E P,RODZEN J A,BANKS J D,et al.Microsatellite analysis of three subspecies of Elk (Cervus elaphus) in California[J].Journal of Mammalogy,2007,88(3):801-808. [44] KUEHN R,SCHROEDER W,PIRCHNER F,et al.Genetic diversity,gene flow and drift in Bavarian red deer populations (Cervus elaphus)[J].Conservation Genetics,2003,4(2):157-166. [45] FEULNER P G D,BIELFELDT W,ZACHOS F E,et al.Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer)[J].Heredity,2004,93(3):299-306. [46] 贾 斌,张苏云,王建华,等.利用微卫星标记分析新疆天山马鹿3个群体的遗传多样性[J].草食家畜,2006,2:17-20. JIA B,ZHANG S Y,WANG J H,et al.Microsatellite analysis of genetic diversity of three Cervus elaphus songaricus colony in Xinjiang[J].Grass-Feeding Livestock,2006,2:17-20. (in Chinese) [47] HOGLUND J,CHINARRO M C,JARNEMO A,et al.Genetic variation and structure in Scandinavian red deer (Cervus elaphus):Influence of ancestry,past hunting,and restoration management[J].Biological Journal of the Linnean Society,2013,109(1):43-53. [48] NUSSEY D.H,PEMBERTON J,DONALD A,et al.Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus)[J].Heredity,2006,97(1):56-65. [49] HU H J,XING B,YANG M,et al.Population and genetic diversity of Tibetan red deer based on fecal DNA[J].Journal of Forestry Research,2018,29(1):227-232. [50] HAANES H,ROED K H,ESPONA S P,et al.Low genetic variation support bottlenecks in Scandinavian red deer[J].European Journal of Wildlife Research,2011,57(6):1137-1150. [51] GURGUL A,RADKO A,EWA S.Characteristics of X- and Y-chromosome specific regions of the amelogenin gene and a PCR-based method for sex identification in red deer (Cervus elaphus)[J].Molecular Biology Reports,2010,37(6):2915-2918. [52] KASARDA R,MORAVCIKOVA N,TRAKOVICKA A,et al.Genomic variation across cervid species in respect to the estimation of red deer diversity[J].Acta Veterinaria,2017,67(1):43-56. [53] JONG J F D,HOOFT P V,MEGENS H J,et al.Fragmentation and translocation distort the genetic landscape of ungulates:Red deer in the Netherlands[J].Frontiers in Ecology and Evolution,2020,8:365. [54] FARLANE S E,DARREN C H,SENN H V,et al.Increased genetic marker density reveals high levels of admixture between red deer and introduced Japanese sika in Kintyre,Scotland[J].Evolutionary Applications,2020,13(2):432-441. [55] SCHNITZLER A,GRANADO J,PUTELAT O,et al.Genetic diversity,genetic structure and diet of ancient and contemporary red deer (Cervus elaphus L.) from North-eastern France[J].PLoS One,2018,13(1):e0189278. [56] CRISTIANO V,SEAN M H,ELENA P,et al.Ecology,environment and evolutionary history influence genetic structure in five mammal species from the Italian Alps[J].Biological Journal of the Linnean Society,2016,117(3):428-446. [57] IRWIN D M,KOCHER T D,WILSON A C.Evolution of the cytochrome b gene of mammals[J].Journal of Molecular Evolution,1991,32:128-144. [58] 乔付杰,李俊乐,高 惠,等.基于线粒体Cytb DNA阿拉善马鹿分子系统学研究[J].野生动物学报,2019,40(2):307-311. QIAO F J,LI J L,GAO H,et al.Molecular phylogenetics of the Alashan red deer (Cervus elaphus alxaicus) based on Cytb DNA[J].Chinese Journal of Wildlife,2019,40(2):307-311.(in Chinese) [59] 刘艳华,张明海.基于线粒体Ctyb基因的西藏马鹿种群遗传多样性研究[J].生态学报,2011,31(7):1976-1981. LIU Y H,ZHANG M H.Population genetic diversity in Tibet red deer (Cervus elaphus wallichi) revealed by mitochondrial Cytb gene analysis[J].Acta Ecologica Sinica,2011,31(7):1976-1981.(in Chinese) [60] 张 丽,滚双宝,雷天云,等.应用mtDNA Cytb基因全序列分析中国5个马鹿群体的遗传多样性和系统发育[J].华北农学报,2010,25(4):12-16. ZHANG L,GUN S B,LEI T Y,et al.Analysis of genetic diversity and phylogeny of five Chinese subspecies of wapiti using mitochondrial Cytb complete sequence[J].Acta Agriculturae Boreali-Sinica,2010,25(4):12-16.(in Chinese) [61] TIAN X M,YANG M,ZHANG M H,et al.Assessing genetic diversity and demographic history of the Manchurian wapiti (Cervus canadensis xanthopygus) population in the Gaogesitai,Inner Mobglolia,China[J].Applied Ecology and Environmental Research,2020,18(4):5561-5575. [62] RANDI E,MUCCI N,BONNET A,et al.A mitochondrial DNA control region phylogeny of the Cervinae:Speciation in Cervus and implications for conservation[J].Animal Conservation,2001,4(1):1-11. [63] POLZIEHN R O,STROBECK C.A phylogenetic comparison of red deer and wapiti using mitochondrial DNA[J].Molecular Phylogenetics & Evolution,2002,22(3):342-356. [64] ESPONA S,PEREZ F J,COPESTAKE W P,et al.Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations:A mitochondrial survey[J].Heredity,2009,102(2):199-210. [65] 于 浩,李小平,杨秀芹,等.天山马鹿起源与分子进化的研究[J].黑龙江畜牧兽医,2009,15:114-115. YU H,LI X P,YANG X Q,et al.Study on the origin and molecular evolution of Tianshan red deer[J].Heilongjiang Animal Science and Veterinary Medicine,2009,15:114-115.(in Chinese) [66] 涂剑锋,邢秀梅,刘琳玲,等.基于线粒体控制区全序列的鹿亚科系统发育分析[J].西北农业学报,2012,21(3):22-26. TU J F,XING X M,LIU L L,et al.A molecular phylogeny of Cervinae based on mitochondrial complete control region sequence[J].Acta Agriculturae Boreali-occidentalis Sinica,2012,21(3):22-26.(in Chinese) [67] 刘学东.中国鹿类动物线粒体12S rRNA基因序列的比较分析及分子系统发育研究[D].哈尔滨:东北林业大学,2003. LIU X D.Comparative analysis and molecular phylogeny of Chinese deer based on mitochondrial 12S rRNA gene sequence[D].Harbin:Northeast Forest University,2003.(in Chinese) [68] KUZNETSOVA M V,KHOLODOVA M V,DANILKIN A A.Molecular phylogeny of deer (Cervidae:Artiodactyla)[J]. Genetika,2005,41(7):910-918. [69] 邵元臣,邢秀梅,刘华淼,等.中国马鹿线粒体基因组全序列测定及种群遗传分化研究[A]."鹿与生命健康"第五届中国鹿业发展大会暨中国(西丰)鹿与生命健康产业高峰论坛[C].2014. SHAO Y C,XING X M,LIU H M,et al.Complete mitochondrial genome sequencing and population genetic differentiation of Chinese red deer (Cervus elaphus)[A].The Fifth Deer Industry Development Conference of China,China(Xifeng) Deer and Life Health Industry Summit Forum[C].2014.(in Chinese) [70] 苏 莹.马鹿群体Y染色体相关基因遗传多样性分析[D].长春:吉林农业大学,2016. SU Y.Using Y chromosome gene analysis the genetic diversity of Malu[D].Changchun:Jilin Agricultural University,2016.(in Chinese) [71] GUBBAY J,COLLIGNON J,KOOPMAN P,et al.A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes[J].Nature,1990,346(6281):245-250. [72] SINCLAIR A H,BERTA P,PALMER M S,et al.A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif[J].Nature,1990,346(6281):240-244. [73] PFEIFFER I,BRENIG B.X- and Y-chromosome specific variants of the amelogenin gene allow sex determination in sheep (Ovis aries) and European red deer (Cervus elaphus)[J].BioMed Central,2005,6:16. [74] FARAHVASH T,TORSHIZIL R V,MASOUDI A A,et al.AMELX and AMELY structure and application for sex determination of Iranian maral deer (Cervus elaphus maral)[J].Iranian Journal of Applied Animal Science,2016,6(4),963-968 [75] 李蕊秀,高迎春,吴家栋,等.Usp9y基因在不同发育阶段小鼠睾丸组织和睾丸相关细胞系中的表达特征[J].山西医科大学学报,2019,50(1):15-19. LI R X,GAO Y C,WU J D,et al.Expression of Usp9y gene in mouse testis at different developmental stages and testis-associated cell lines[J].Journal of Shanxi Medical University,2019,50(1):15-19.(in Chinese) [76] WEI L M,XI J F,ZHANG Y S,et al.The use of RNAi technology to interfere with Zfx gene increases the male rates of red deer (Cervus elaphus) offspring[J].BioMed Research International,2020,2020:9549765. [77] 张永生,席继锋,王香祖,等.Zfy基因与哺乳动物性别控制研究进展[J].畜牧与兽医,2016,48(12):105-108. ZHANG Y S,XI J F,WANG X Z,et al.Research progress of Zfy gene in mammals sex control[J].Animal Husbandry & Veterinary Medicine,2016,48(12):105-108.(in Chinese) [78] 魏丽敏,孙丽荣,张永生,等.马鹿Zfx/Zfy基因的克隆及序列分析[J].中国畜牧兽医,2016,43(9):2272-2278. WEI L M,SUN L R,ZHANG Y S,et al.Cloning and sequence analysis of Zfx/Zfy gene in Cervus elaphus[J].China Animal Husbandry & Veterinary Medicine,2016,43(9):2272-2278.(in Chinese) [79] ESPONA S P,BARBERIA F J,PEMBERTON J M.Assessing the impact of past wapiti introductions into Scottish Highland red deer populations using a Y chromosome marker[J].Mammalian Biology,2011,76(5):640-643. |
[1] | 杨彦, 胡雁鸣, 丁健, 李犇, 何雨桐, 刘雪薇, 王佳文, 兰卓, 邱鸿宇, 高俊峰, 王春仁. 蟾蜍棒线虫线粒体全基因组特征分析[J]. 中国畜牧兽医, 2025, 52(7): 3190-3201. |
[2] | 陈志安, 章蓓雯, 何敏嘉, 陈美椿, 翁成桢, 黄欣欣, 李鸿喜, 曾仲文, 陈宝良, 邱龙新, 陈洪博, 李晓冰. 猪伪狂犬病病毒gE基因遗传变异及密码子使用偏好性分析[J]. 中国畜牧兽医, 2025, 52(7): 3264-3275. |
[3] | 钟玮霖, 尧建辉, 魏晓琪, 颜广智, 陈盛楠, 刘明杰, 黄良宗. 广东某规模化猪场PCV2d感染的诊断与遗传进化分析[J]. 中国畜牧兽医, 2025, 52(6): 2781-2789. |
[4] | 武月, 石兴亚, 张帅, 赵云环, 郭立明, 左玉柱, 范京惠. 猪伪狂犬病病毒分离鉴定及gE和gC基因遗传进化分析[J]. 中国畜牧兽医, 2025, 52(5): 2266-2277. |
[5] | 朱慧茹, 赵育栋, 刘丹丹, 姜冰冰, 张泽田, 马思楠, 李龙涛, 黄景仁杰, 王永青, 巴音查汗, 张杨, 李永畅, 张伟. 新疆南疆部分地区绵羊体表寄生软蜱种类鉴定及其携带绵羊无浆体的检测分析[J]. 中国畜牧兽医, 2025, 52(4): 1825-1835. |
[6] | 王盼盼, 沙拉玛提·波代, 巴合提·博代, 李振伟, 吾热力哈孜·哈孜汗. 基于D-loop区多态性分析新疆地区7个哈萨克牛群体遗传结构和母系起源[J]. 中国畜牧兽医, 2025, 52(3): 1166-1179. |
[7] | 林伟山, 马豆豆, 雷萌桐, 魏斌, 李国才, 王光华, 王戈平, 简莹娜, 李秀萍. 青海海北地区牦牛病毒性腹泻病毒流行病学调查及5'-UTR遗传进化分析[J]. 中国畜牧兽医, 2025, 52(3): 1241-1249. |
[8] | 周娜, 李才善, 赵雪晴, 阿布都卡迪尔·米吉提, 邓聿钤, 刘诗语, 石文玉, 郭庆勇, 巴音查汗·盖力克. 新疆阿克苏地区羊泰勒虫PCR检测及遗传多样性分析[J]. 中国畜牧兽医, 2025, 52(3): 1292-1300. |
[9] | 邹畅, 胡月, 李海花, 乔家运. 保定地区猫泛白细胞减少症病毒VP2基因的遗传进化分析[J]. 中国畜牧兽医, 2025, 52(2): 823-831. |
[10] | 白一涵, 王东亮. 猪圆环病毒遗传与宿主多样性研究进展[J]. 中国畜牧兽医, 2025, 52(2): 832-843. |
[11] | 于顺钦, 地力非热·那地尔, 阿地兰·阿不都热依木, 刘诗杰, 麦吾兰·麦麦提, 张欣欣, 库尔班·吐拉克. 人工补光对阿山马鹿茸生长及粪便激素水平的影响[J]. 中国畜牧兽医, 2025, 52(1): 70-79. |
[12] | 李超杰, 蒙萌, 李博, 靳光, 王坤, 车雷杰, 乔晓春, 张元庆, 牛晓艳. 利用微卫星标记分析山西3个地方牛群体的遗传多样性和遗传分化[J]. 中国畜牧兽医, 2025, 52(1): 226-237. |
[13] | 王心彤, 张艳丽, 龚颖, 刘雪雪, 蒋琳, 马月辉, 刘书琴, 浦亚斌. 基于世界家马群体遗传结构构建藏马特异性遗传标签[J]. 中国畜牧兽医, 2025, 52(1): 238-248. |
[14] | 陈作鑫, 潘彦林, 黄允真, 李林林, 董嘉文, 向勇, 徐志宏, 孙敏华, 黄淑坚, 廖明, 张俊勤. 2株水禽源坦布苏病毒的分离鉴定及全基因序列分析[J]. 中国畜牧兽医, 2025, 52(1): 310-321. |
[15] | 曹萍, 李瑞哲, 陈生梅, 薛斌, 韩生兰, 梅萨, 达桑, 才加, 孙永刚, 马志杰. 青海省果洛藏族自治州4个牦牛群体父系遗传分子评估[J]. 中国畜牧兽医, 2024, 51(9): 3948-3957. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||