China Animal Husbandry & Veterinary Medicine ›› 2022, Vol. 49 ›› Issue (11): 4318-4326.doi: 10.16431/j.cnki.1671-7236.2022.11.022
• Genetics and Breeding • Previous Articles Next Articles
HOU Junjie1, SHI Zhuoyan1, LIU Xiaoping1, JI Xiang1, CHU Xiaoran1, SONG Zhen1,2, WEN Fengyun1,2
Received:
2022-05-06
Online:
2022-11-05
Published:
2022-11-04
CLC Number:
HOU Junjie, SHI Zhuoyan, LIU Xiaoping, JI Xiang, CHU Xiaoran, SONG Zhen, WEN Fengyun. Research Progress on microRNA Regulation of Intramuscular Fat Deposition in Pigs[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(11): 4318-4326.
[1] SCHUMACHER M, DELCURTO-WYFFELS H, THOMSON J, et al.Fat deposition and fat effects on meat quality:A review[J].Animals, 2022, 12(12):1550. [2] XIE L, QIN J, RAO L, et al.Accurate prediction and genome-wide association analysis of digital intramuscular fat content in longissimus muscle of pigs[J].Animal Genetics, 2021, 52(5):633-644. [3] ZHUANG Z, DING R, QIU Y, et al.A large-scale genome-wide association analysis reveals QTL and candidate genes for intramuscular fat content in Duroc pigs[J].Animal Genetics, 2021, 52(4):518-522. [4] SCOLLAN N D, PRICE E M, MORGAN S A, et al.Can we improve the nutritional quality of meat?[J].Proceedings of the Nutrition Society, 2017, 76(4):1-16. [5] CAI C, LI M, ZHANG Y, et al.Comparative transcriptome analyses of longissimus thoracis between pig breeds differing in muscle characteristics[J].Frontiers in Genetics, 2020, 11:526309. [6] SAYED D, ABDELLATIF M.microRNAs in development and disease[J].Physiological Reviews, 2011, 91(3):827-887. [7] VISHNOI A, RANI S.miRNA biogenesis and regulation of diseases:An overview[J].Methods in Molecular Biology, 2017, 1509:1-10. [8] HILL M, TRAN N.miRNA interplay:Mechanisms and consequences in cancer[J].Disease Models & Mechanisms, 2021, 14(4):dmm047662. [9] JANANI C, RANJITHA KUMARI B D.PPAR gamma gene:A review[J]. Diabetes & metabolic syndrome, 2015, 9(1):46-50. [10] MALGWI I H, HALAS V, GRVNVALD P, et al.Genes related to fat metabolism in pigs and intramuscular fat content of pork:A focus on nutrigenetics and nutrigenomics[J].Animals, 2022, 12(2):150. [11] HAO J, YANG X, ZHANG C, et al.KLF3 promotes the 8-cell-like transcriptional state in pluripotent stem cells[J].Cell Proliferation, 2020, 53(11):e12914. [12] FAN H, ZHANG Y, ZHANG J, et al.Cold-inducible KLF9 regulates thermogenesis of brown and beige fat[J].Diabetes, 2020, 69(12):2603-2618. [13] JIANG S, WEI H, SONG T, et al.KLF13 promotes porcine adipocyte differentiation through PPARγ activation[J].Cell & Bioscience, 2015, 5(1):28. [14] ACHKAR N P, CAMBIAGNO D A, MANAVELLA P A.miRNA biogenesis:A dynamic pathway[J].Trends in Plant Science, 2016:1034-1044. [15] LEE Y S, DUTTA A.microRNAs in cancer[J].Annual Review of Pathology-Mechanisms of Disease, 2009, 4:199-227. [16] JI C, GUO X.The clinical potential of circulating microRNAs in obesity[J].Nature Reviews Endocrinology, 2019, 15(12):731-743. [17] CAI Y, YU X, HU S, et al.A brief review on the mechanisms of miRNA regulation[J].Genomics, Proteomics & Bioinformatics, 2009, 7(4):147-154. [18] LU T X, ROTHENBERG M E.microRNA[J].Journal of Allergy and Clinical Immunology, 2018, 141(4):1202-1207. [19] LIANG Y, WANG Y, MA L, et al.Comparison of microRNAs in adipose and muscle tissue from seven indigenous Chinese breeds and Yorkshire pigs[J].Animal Genetics, 2019, 50(5):439-448. [20] WANG W, LI X, DING N, et al.miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4[J].BMC Genetics, 2020, 21(1):33. [21] FARMER S R.Transcriptional control of adipocyte formation[J].Cell Metabolism, 2006, 4(4):263-273. [22] WU Z, WANG S.Role of Krüppel-like transcription factors in adipogenesis[J].Developmental Biology, 2013, 373(2):235-243. [23] ZHANG J, YANG C, BREY C, et al.Mutation in caenorhabditis elegans Krüppel-like factor, KLF-3 results in fat accumulation and alters fatty acid composition[J].Experimental Cell Research, 2009, 315(15):2568-2580. [24] LEE H, KIM H J, LEE Y J, et al.Krüppel-like factor KLF8 plays a critical role in adipocyte differentiation[J].PLoS One, 2012, 7:e52474. [25] PENG Y, CHEN F F, GE J, et al.miR-429 inhibits differentiation and promotes proliferation in porcine preadipocytes[J].International Journal of Molecular Sciences, 2016, 17(12):2047. [26] SHARMA S S, MA L, PLEDGER W J.p27 Kip1 inhibits the cell cycle through non-canonical G1/S phase-specificgatekeeper mechanism[J].Cell Cycle, 2015, 14:3954-3964. [27] CHEN F F, XIONG Y, PENG Y, et al.miR-425-5p inhibits differentiation and proliferation in porcine intramuscular preadipocytes[J].International Journal of Molecular Sciences, 2017, 18(10):2101. [28] ROSEN E D, SPIEGELMAN B M.Molecular regulation of adipogenesis[J].Annual Review of Cell and Developmental Biology, 2000, 16:145-171. [29] FEVE B.Adipogenesis:Cellular and molecular aspects[J].Best Practice & Research Clinical Endocrinology & Metabolism, 2005, 19(4):483-499. [30] DU J, XU Y, ZHANG P, et al.microRNA-125a-5p affects adipocytes proliferation, differentiation and fatty acid composition of porcine intramuscular fat[J].International Journal of Molecular Sciences, 2018, 19(2):501. [31] TSAI L H, LEES E, FAHA B, et al.The cdk2 kinase is required for the G1-S transition in mammalian cells[J].Oncogene, 1993, 8(6):1593-1602. [32] SHERR C J, ROBERTS J M.Inhibitors of mammalian G1 cyclin-dependent kinases[J].Genes & Development, 1995, 9:1149-1163. [33] PEARSON R, FUNNELL A, CROSSLEY M.The mammalian zinc finger transcription factor Krüppel-like factor 3(KLF3/BKLF)[J].IUBMB Life, 2015, 63(2):86-93. [34] HONG F, RAZA H, ABBAS S H, et al.Genetic variants in the promoterregion of the KLF3 gene associated with fat deposition in Qinchuan cattle[J].Gene, 2018, 672:50-55. [35] LIU H, WEI W, LIN W, et al.miR-32-5p regulates lipid accumulation in intramuscular fat of Erhualian pigs by suppressing KLF3[J].Lipids, 2021, 56(3):279-287. [36] AHMADIAN M, SUH J M, HAH N, et al.PPARγ signaling and metabolism:The good, the bad and the future[J].Nature Medicine, 2013, 19(5):557-566. [37] KIM S Y, KIM A Y, LEE H W, et al.miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression[J].Biochemical and Biophysical Research Communications, 2010, 392(3):323-328. [38] MCGREGOR R A, CHOI M S.microRNAs in the regulation of adipogenesis and obesity[J].Current Molecular Medicine, 2011, 11(4):304-316. [39] LI H, XUE M, XU J, et al.miR-301a is involved in adipocyte dysfunction during obesity-related inflammation via suppression of PPARγ[J].Die Pharmazie, 2016, 71(2):84-88. [40] JEONG B C, KANG I H, KOH J T.microRNA-302a inhibits adipogenesis by suppressing peroxisome proliferator-activated receptor γ expression[J].FEBS Letters, 2014, 588(18):3427-3434. [41] SUN J K, WANG Y S, LI Y B, et al.Downregulation of PPARγ by miR-548 d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenicpotential[J].Journal of Translational Medicine, 2014, 12:168. [42] LEE E K, LEE M J, ABDELMOHSEN K, et al.miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression[J].Molecular and Cellular Biology, 2011, 31(4):626-638. [43] PAN S F, YANG X J, JIA Y M, et al.Intravenous injection of microvesicle-delivery miR-130b alleviates high-fat diet-induced obesity in C57BL/6 mice through translational repression of PPAR-γ[J].Journal of Biomedical Science, 2015, 22:86. [44] LING H Y, WEN G B, FENG S D, et al.microRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling[J].Clinical and Experimental Pharmacology & Physiology, 2011, 38(4):239-246. [45] XIE H M, LIM B, LODISH H F.microRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity[J].Diabetes, 2009, 58(5):1050-1057. [46] WEI W, SUN W, HAN H, et al.miR-130a regulates differential lipid accumulation between intramuscular and subcutaneous adipose tissues of pigs via suppressing PPARG expression[J].Gene, 2017, 636:23-29. [47] LI H Y, XI Q Y, XIONG Y Y, et al.Identification and comparison of microRNAs from skeletal muscle and adipose tissues from two porcine breeds[J].Animal Genetics, 2012, 43(6):704-713. [48] LI G, LI Y, LI X, et al.microRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing[J].Journal of Cellular Biochemistry, 2011, 112(5):1318-1328. [49] CHO I S, KIM J, SEO H Y, et al.Cloning and characterization of microRNAs from porcine skeletal muscle and adiposetissue[J].Molecular Biology Reports, 2010, 37(7):3567-3574. [50] CHEN W C, WANG C Y, HUNG Y H, et al.Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme A synthetase family in cancer[J].PLoS One, 2016, 11(5):e0155660. [51] MERCADE A, SANCHEZ A, FOLCH J M.Assignment of the acyl-CoA synthetase long-chain family member 4(ACSL4) gene to porcine chromosome X[J].Animal Genetics, 2005, 36(1):76. [52] WANG W, LI X, DING N, et al.miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4[J].BMC Genetics, 2020, 21(1):33. [53] SUN Y M, QIN J, LIU S G, et al.PDGFRα regulated by miR-34a and FoxO1 promotes adipogenesis in porcine intramuscular preadipocytes through Erk signaling pathway[J].International Journal of Molecular Sciences, 2017, 18(11):2424. [54] MARCELIN G, FERREIRA A, LIU Y, et al.A PDGFRα-mediated switch toward adipocyte progenitors controls obesity-induced adipose tissue fibrosis[J].Cell Metabolism, 2017, 25(3):673-685. [55] IWAYAMA T, STEELE C, YAO L, et al.PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity[J].Genes & Development, 2015, 29(11):1106-1119. [56] LOUET J F, COSTE A, AMAZIT L, et al.Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program[J].Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47):17868-17873. [57] XU L, MA X, LI J, et al.SRC-3 defcient mice developedfat redistribution under high-fat diet[J].Endocrine, 2010, 38(1):60-66. [58] COSTE A, LOUET J F, LAGOUGE M, et al.The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1 alpha[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44):17187-17192. [59] WANG Z, QI C, KRONES A, et al.Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance[J].Cell Metabolism, 2006, 3(2):111-122. [60] HAN H, GU S, CHU W, et al.miR-17-5p regulates differential expression of NCOA3 in pig intramuscular and subcutaneous adipose tissue[J].Lipids, 2017, 52(11):939-949. [61] ZHANG Q, CAI R, TANG G, et al.miR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and Akt/mTORC1 signal pathways in porcine intramuscular preadipocytes[J].Journal of Animal Science and Biotechnology, 2021, 12(1):12. [62] SALAZAR G, CULLEN A, HUANG J, et al.SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascularsenescence[J].Autophagy, 2020, 16(6):1092-1110. [63] TAN H W S, ANJUM B, SHEN H M, et al.Lysosomal inhibition attenuates peroxisomal gene transcription via suppression of PPARA and PPARGC1A levels[J].Autophagy, 2019, 15(8):1455-1459. [64] CHAMBERS J M, POUREETEZADI S J, ADDIEGO A, et al.PPARgc1a controls nephronsegmentation during zebrafish embryonic kidney ontogeny[J].eLife, 2018, 7:e40266. [65] LIU L, QIAN K, WANG C.Discovery of porcine miRNA-196a/b may influence porcine adipogenesis in longissimus dorsi muscle by miRNA sequencing[J].Animal Genetics, 2017, 48(2):175-181. [66] WU W, XU K, LI M, et al.microRNA-29b/29c targeting CTRP6 influences porcine adipogenesis via the Akt/PKA/MAPK signalling pathway[J].Adipocyte, 2021, 10(1):264-274. |
[1] | YANG Quan, LI Xiao, YAN Zunqiang, WANG Pengfei, HUANG Xiaoyu, GAO Xiaoli, YANG Qiaoli, GUN Shuangbao, YANG Jiaojiao. Cloning,Bioinformatics Analysis and Tissue Expression of CXCL12 Gene in Hezuo Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2482-2493. |
[2] | REN Hao, ZHU Yixuan, CHAO Tingting, WANG Xiaoyi, LU Shaoxiong, YANG Yongli, CHEN Qiang, LI Mingli. Identification and Functional Prediction of lncRNA in Longissimus Dorsi Muscle of Saba Pigs with Different Growth Rates [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2494-2505. |
[3] | CAO Lihua, LI Huali, REN Huibo, LUO Baoming, LIU Yingying, CUI Qingming, DENG Yuan, ZHU Ji, HU Xionggui, LUO Jianhui, ZUO Jianbo, CHEN Chen, PENG Yinglin. Effects of Gender and Slaughter Weight on Carcass and Meat Quality of Guangyi Black Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2612-2625. |
[4] | LIU Jiayi, WU Hua, SHEN Tong, WANG Kailong, WANG Wensheng, CHEN Zixin. Effects of Extract of Lycium ruthenicum Murr on Growth Performance,Slaughter Performance,Antioxidant Function and Meat Quality of Bamei Ternary Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2637-2649. |
[5] | QIN Xiyu, LIU Xiaoxue, CHAI Yi, LAI Mengxuan, REN Xiaomin, ZHANG Depeng, ZHANG Peng, LIJuntao, LI Yixuan, WANG Ran, HAO Yanling, WU Huijuan, WANG Xiaoyu. Establishment and Evaluation of Double Cannulas Model of Duodenal and Terminal Ileum of Bama Minipigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2078-2087. |
[6] | LI Tianxiu, LI Xinpeng, DONG Xinxing, LAN Guoxiang, YAN Dawei, ZHU Jiawei. Amplification,Sequence Analysis and Tissue Expression Study of HMOX2 Gene in Lijiang Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2219-2231. |
[7] | MIAO Na, QIAO Jiakun, YANG Hui, HAN Pingping, XU Fangjun, CHE Zhaoxuan, DAI Xiangyu, XU Minghang, LONG Zhiwei, ZHU Mengjin. Genome Wide Association Study of Immune Traits in Duroc×Erhualian F2 Generation Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1455-1467. |
[8] | HU Huihui, FU Panpan, LI Jie, YAN Zunqiang, GAO Xiaoli, YANG Jiaojiao, HUANG Xiaoyu. Cloning,Identification and Tissue Expression Analysis of TRIF Gene CDS Region in Hezuo Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1478-1487. |
[9] | HE Xiaofei, LEI Yuhang, ZHU Li, GAN Mailin, SHEN Linyuan. Research Progress on circRNA Regulating Fat Deposition in Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1627-1638. |
[10] | WEI Ying, DUAN Yehui, DENG Jinping. Research Progress on the Application of Flavor Amino Acids in Pig and Chicken Production [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1089-1101. |
[11] | WU Shihui, ZHOU Guixian, WANG Minle, LIAO Yixiao, WEN Ming, YANG Ying. Isolation,Identification and Biological Characteristics of a Strain of Bacillus velezensis from Kele Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1437-1446. |
[12] | LI Jing, DONG Ying. Effects of Bacillus subtilis on Growth Performance,Intestinal Morphology, Serum Biochemical and Immune Indexes in Nursery Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 678-685. |
[13] | HU Ziping, SU Yanfang, ZONG Wencheng, NIU Naiqi, ZHNAG Longchao, WANG Yuan. Screening of Candidate Genes for Two-end Black Coat Color in Jianhe White Xiang Pigs Based on Transcriptome and Genome Data [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 13-24. |
[14] | LI Qilong, SHI Hanjing, CHEN Sisi, XU Junfei, ZHOU Wenyue, GONG Saibin, LUO Jie, YANG Feilai, LI Fengna, GUO Qiuping. Effects of Dietary Fermented Shiitake Residues Supplementation on Growth Performance,Meat Quality and Flavor Substances of Finishing Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 182-194. |
[15] | ZHU Xueli, MA Jianing, XU Ke, SUN Chao, LIU Xin, PU Lei. Association Analysis of PLPP3 Gene Polymorphisms with Back Fat Thickness and Fatty Acids Content in Beijing Black Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 278-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||