China Animal Husbandry & Veterinary Medicine ›› 2022, Vol. 49 ›› Issue (11): 4129-4138.doi: 10.16431/j.cnki.1671-7236.2022.11.003
• Biotechnology • Previous Articles Next Articles
XU Xin1, LIU Mingjun2
Received:
2022-05-10
Online:
2022-11-05
Published:
2022-11-04
CLC Number:
XU Xin, LIU Mingjun. Research Progress on Application of CRISPR/Cas9 Genome Editing Systems in Sheep[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(11): 4129-4138.
[1] KIM J S.Genome editing comes of age[J]. Nature Protocols, 2016, 11(9):1573-1578. [2] BAK R O, GOMEZ-OSPINA N, PORTEUS M H.Gene editing on center stage[J]. Trends in Genetics, 2018, 34(8):600-611. [3] URNOV F D.Genome editing B.C.(before CRISPR):Lasting lessons from the "Old Testament"[J]. CRISPR Journal, 2018, 1(1):34-46. [4] HSU P, LANDER E, ZHANG F.Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. [5] KOMOR A, BADRAN A, LIU D.CRISPR-based technologies for the manipulation of eukaryotic genomes[J]. Cell, 2017, 168:20-36. [6] KNOTT G, DOUDNA J.CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405):866-869. [7] DE LOS ANGELES A, PHO N, REDMOND JR D E.Generating human organs via interspecies chimera formation:Advances and barriers[J]. The Yale Journal of Biology and Medicine, 2018, 91(3):333-342. [8] FEHILLY C B, WILLADSEN S M, TUCKER E M.Interspecific chimaerism between sheep and goat[J]. Nature, 1984, 307(5952):634-636. [9] HORVATH P, BARRANGOU R.CRISPR/Cas, the immune system of bacteria and archaea[J]. Science, 2010, 327(5962):167-170. [10] INEK M, CHYLINSKI K, FONFARA I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [11] NIU Y, JIN M, LI Y, et al.Biallelic β-carotene oxygenase 2 knockout results in yellow fat in sheep via CRISPR/Cas9[J]. Animal Genetics, 2017, 48(2):242-244. [12] CRISPO M, MULET A P, TESSON L, et al.Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J]. PLoS One, 2015, 10(8):e0136690. [13] NI W, QIAO J, HU S, et al.Efficient gene knockout in goats using CRISPR/Cas9 system[J]. PLoS One, 2014, 9(9):e106718. [14] WANG X, YU H, LEI A, et al.Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Scientific Reports, 2015, 5:13878. [15] GAO Y, WU H, WANG Y, et al.Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J]. Genome Biology, 2017, 18(1):13. [16] HAI T, TENG F, GUO R, et al.One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Research, 2014, 24(3):372-375. [17] WHITWORTH K M, LEE K, BENNE J A, et al.Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J]. Biology of Reproduction, 2014, 91(3):78. [18] WANG Y, DU Y, SHEN B, et al.Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA[J]. Scientific Reports, 2015, 5:8256. [19] WILLIAMS D K, PINZON C, HUGGINS S, et al.Genetic engineering a large animal model of human hypophosphatasia in sheep[J]. Scientific Reports, 2018, 8(1):16945. [20] EATON S L, PROUDFOOT C, LILLICO S G, et al.CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease)[J]. Scientific Reports, 2019, 9(1):9891. [21] NIU Y, ZHAO X, ZHOU J, et al.Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9[J]. Reproduction, Fertility and Development, 2018, 30(2):307-312. [22] WANG K, TANG X, LIU Y, et al.Efficient generation of orthologous point mutations in pigs via CRISPR-assisted ssODN-mediated homology-directed repair[J]. Molecular Therapy Nucleic Acids, 2016, 5(11):e396. [23] KOMOR A, KIM Y, PACKER M, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. [24] GAUDELLI N, KOMOR A, REES H, et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [25] ZHOU S, CAI B, HE C, et al.Programmable base editing of the sheep genome revealed no genome-wide off-target mutations[J]. Frontiers in Genetics, 2019, 10:215. [26] LI G, ZHOU S, LI C, et al.Base pair editing in goat:Nonsense codon introgression into FGF5 results in longer hair[J]. FEBS Journal, 2019, 286(23):4675-4692. [27] XIE J, GE W, LI N, et al.Efficient base editing for multiple genes and loci in pigs using base editors[J]. Nature Communications, 2019, 10(1):2852. [28] ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 576(7785):149-157. [29] CHEN P J, HUSSMANN J A, YAN J, et al.Enhanced prime editing systems by manipulating cellular determinants of editing outcomes[J]. Cell, 2021, 184(22):5635-5652. [30] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR/Cas system[J]. Cell, 2015, 163(3):759-771. [31] RAN F A, CONG L, YAN W X, et al.In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546):186-191. [32] SUNG Y H, KIM J M, KIM H T, et al.Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases[J]. Genome Research, 2014, 24(1):125-131. [33] VILARINO M, SUCHY F P, RASHID S T, et al.Mosaicism diminishes the value of pre-implantation embryo biopsies for detecting CRISPR/Cas9 induced mutations in sheep[J]. Transgenic Research, 2018, 27(6):525-537. [34] YEN S T, ZHANG M, DENG J M, et al.Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes[J]. Developmental Biology, 2014, 393(1):3-9. [35] YANG L, GUELL M, BYRNE S, et al.Optimization of scarless human stem cell genome editing[J]. Nucleic acids Research, 2013, 41(19):9049-9061. [36] RICHARDSON C D, RAY G J, DEWITT M A, et al.Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA[J]. Nature Biotechnology, 2016, 34(3):339-344. [37] CHEN F, PRUETT-MILLER S M, HUANG Y, et al.High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases[J]. Nature Methods, 2011, 8(9):753-755. [38] PEROTA A, LAGUTINA I, DUCHI R, et al.Generation of cattle knockout for galactose-alpha1, 3-galactose and N-glycolylneuraminic acid antigens[J]. Xenotransplantation, 2019, 26(5):e12524. [39] MENCHACA A, BARRERA N, NETO P, et al.Advances and limitations of in vitro embryo production in sheep and goats[J]. Animal Reproduction, 2016, 13(133):273-278. [40] MENCHACA A, ANEGON I, WHITELAW C, et al.New insights and current tools for genetically engineered (GE) sheep and goats[J]. Theriogenology, 2016, 86(1):160-169. [41] LI W R, LIU C X, ZHANG X M, et al.CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J]. FEBS Journal, 2017, 284(17):2764-2773. [42] ZHANG X, LI W, LIU C, et al.Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9[J]. Scientific Reports, 2017, 7(1):8149. [43] REMY S, CHENOUARD V, TESSON L, et al.Generation of gene-edited rats by delivery of CRISPR/Cas9 protein and donor DNA into intact zygotes using electroporation[J]. Scientific Reports, 2017, 7(1):16554. [44] QIN W, DION S L, KUTNY P M, et al.Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease[J]. Genetics, 2015, 200(2):423-430. [45] MENCHACA A, SANTOS P, CUADRO F, et al.From reproductive technologies to genome editing in small ruminants:An embryo's journey[J]. Animal Reproduction, 2018, 15(Suppl 1):984-995. [46] TANIHARA F, HIRATA M, NGUYEN N T, et al.Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation[J]. Animal Science Journal, 2018, 90(1):55-61. [47] TANIHARA F, HIRATA M, NGUYEN N T, et al.Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via electroporation[J]. PLoS One, 2018, 13(10):e0206360. [48] HIRATA M, TANIHARA F, WITTAYARAT M, et al.Genome mutation after introduction of the gene editing by electroporation of Cas9 protein (GEEP) system in matured oocytes and putative zygotes[J]. In Vitro Cellular and Developmental Biology-Animal, 2019, 55(4):237-242. [49] MIAO D, GIASSETTI M I, CICCARELLI M, et al.Simplified pipelines for genetic engineering of mammalian embryos by CRISPR-Cas9 electroporationdagger[J]. Biology of Reproduction, 2019, 101(1):177-187. [50] SLINGENBERGH J I, GILBERT M, DE BALOGH K I, et al.Ecological sources of zoonotic diseases[J]. Revue Scientifique et Technique-office International Des Epizooties, 2004, 23(2):467-484. [51] WHITWORTH K M, ROWLAND R R, EWEN C L, et al.Gene-edited pigs are protected from Porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 2016, 34(1):20-22. [52] HAN H, YONGHE M A, WANG T, et al.One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system[J]. Frontiers of Agricultural Science and Engineering, 2014, 1(1):2-5. [53] HU R, FAN Z Y, WANG B Y, et al.RAPID COMMUNICATION:Generation of FGF5 knockout sheep via the CRISPR/Cas9 system[J]. Journal of Animal Science, 2017, 95(5):2019-2024. [54] FAN Z, PERISSE I V, COTTON C U, et al.A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene[J]. JCI Insight, 2018, 3(19):e123529. [55] JIANG H, WONG W H.SeqMap:Mapping massive amount of oligonucleotides to the genome[J]. Bioinformatics, 2008, 24(20):2395-2396. [56] SANGSU B, JEONGBIN P, JIN-SOO K.Cas-OFFinder:A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases[J]. Bioinformatics, 2014, 10:1473-1475. [57] SHENGSONG X, BIN S, CHAOBAO Z, et al.sgRNAcas9:A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites[J]. PLoS One, 2014, 9(6):e100448. [58] XIAOLONG W, JING L, YIYUAN N, et al.Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep[J]. BMC Genomics, 2018, 19(1):397. [59] LI C, ZHOU S, LI Y, et al.Trio-based deep sequencing reveals a low incidence of off-target mutations in the offspring of genetically edited goats[J]. Frontiers in Genetics, 2018, 9:449. [60] FABRE S, PIERRE A, MULSANT P, et al.Regulation of ovulation rate in mammals:Contribution of sheep genetic models[J]. Reproductive Biology and Endocrinology, 2006, 4:20. [61] ZHANG X, LI W, WU Y, et al.Disruption of the sheep BMPR-ⅠB gene by CRISPR/Cas9 in in vitro-produced embryos[J]. Theriogenology, 2017, 91:163-172. [62] ZHOU S, YU H, ZHAO X, et al.Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9[J]. Reproduction, Fertility and Development, 2018, 30(12):1616-1621. [63] ZHOU S, DING Y, LIU J, et al.Highly efficient generation of sheep with a defined FecB(B) mutation via adenine base editing[J]. Genetics Selection Evolution, 2020, 52(1):35. [64] XU X, ZHANG X, PENG X, et al.Comparison of the efficiency and precision of base editor and CRISPR/Cas9 for inducing defined point mutation (S395F) in ovine embryos[J]. Reproduction in Domestic Animals, 2022, 57(8):829-838. [65] ABDOLI R, ZAMANI P, MIRHOSEINI S Z, et al.A review on prolificacy genes in sheep[J]. Reproduction in Domestic Animals, 2016, 51(5):631-637. [66] WANG X, NIU Y, ZHOU J, et al.Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep[J]. Scientific Reports, 2016, 6:32271. [67] ZHOU S, KALDS P, LUO Q, et al.Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality[J]. BMC Genomics, 2022, 23(1):348. [68] ZHAO Y, CHEN M, LI Y, et al.A 90-day safety study of meat from MSTN and FGF5 double-knockout sheep in Wistar rats[J]. Life (Basel), 2022, 12(2):204. [69] WU M, WEI C, LIAN Z, et al.Rosa 26-targeted sheep gene knock-in via CRISPR-Cas9 system[J]. Scientific Reports, 2016, 6:24360. [70] TENG M, TAO J, YANG M, et al.An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep[J]. Journal of Pineal Research, 2017, 63(1):e12046. [71] MENCHACA A, MULET A P, DOS SANTOS NETO P C, et al.CRISPR in sheep:A southern perspective[Abstract].In:Abstracts from the UC davis transgenic animal research conference Ⅺ.[J]. Transgenic Research, 2018, 27(5):467-487. [72] YOCKEY L J, JURADO K A, ARORA N, et al.Type Ⅰ interferons instigate fetal demise after Zika virus infection[J]. Science Immunology, 2018, 3(19):eaao1680. [73] FAN Z, REGOUSKI M, YANG M, et al.Program and abstracts of the 14th transgenic technology meeting (TT2017):Snowbird Resort, Salt Lake City, Utah, USA, 1-4 October 2017[J]. Transgenic Research, 2017, 26(Suppl 1):1-45. [74] RASHID T, KOBAYASHI T, NAKAUCHI H.Revisiting the flight of Icarus:Making human organs from PSCs with large animal chimeras[J]. Cell Stem Cell, 2014, 15(4):406-409. [75] VILARINO M, RASHID S T, SUCHY F P, et al.CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep[J]. Scientific Reports, 2017, 7(1):17472. |
[1] | LI Wei, HUANG Qiaoyan, WANG Xinkun, GU Ruohuai, SUN Huiping, ZHU Lexiao, XING Feng. Cloning, Sequence Analysis and Protein Expression of LIN28A Gene Promoter in Duolang Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 2992-3003. |
[2] | CAI Wenjing, CI Qiuyang, TANG Lin, LIU Hang, SUN Xinming, CHEN Yang, JIANG Huaizhi. Differential Expression Analysis of FABP4 Gene in Mammary Gland of Small-tailed Han Sheep Before and After Pregnancy [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(7): 3234-3241. |
[3] | NIU Shuran, PAN Jianfeng, RONG Youjun, AO Xiaofang, WANG Yihan, SHANG Fangzheng, WANG Ruijun, ZHANG Yanjun. Advances on the Application of Circular RNA in Important Economic Traits in Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2468-2481. |
[4] | ZHOU Lusong, ZHAO Yuanyuan, YANG Yuwei, ZHAO Qingyu, MA Qing, TANG Chaohua, ZHANG Huiyan, ZHANG Junmin, QIN Yang, QIN Yuchang. Effects of Sophora alopecuroides and Alkaloids from Sophora alopecuroides on Growth Performance and Rumen Microbiota of Tan Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2540-2551. |
[5] | ZHANG Chengrui, WEI Xuesheng, ZHANG Mingzhu, WANG Jie, FAN Dingkun, ZHANG Juan, ZHU Dezhi, GUO Fusuo, ZHANG Naifeng. Protein Requirements of Growing Hu Sheep Ewe Lambs During 3 to 5 Months of Age [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2128-2139. |
[6] | SHAN Mingzhu, ZHOU Lisheng, NAOMING Gaowa, ZHANG Xiaoxu, XU Yan, CHU Mingxing, PAN Zhangyuan. The Classification Study of Ovine Horn Type [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2177-2186. |
[7] | WURI Lige, LI Na, GERILE Gelaba, HASI Tuya, ZHANG Jingjing, HOU Bin, HASI Surong. Molecular Identification of the Pathogen of Paramphistomiasis in Ordos Fine-wool Sheep and Screening of Deworming Drugs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1807-1814. |
[8] | DU Jiawen, REN Wenyi, XU Xiaofeng, ZHANG Lili. Comparison of the Transcriptome of Longissimus Dorsi Muscle of Tan Sheep at Different Growth Stages [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1011-1021. |
[9] | ZHOU Na, LI Caishan, ZHAO Xueqing, ABUDUKADIER· Mejiti, DENG Yuqian, LIU Shiyu, SHI Wenyu, GUO Qingyong, BAYINGCHAHAN· Gailike. PCR Detection and Genetic Diversity Analysis of Theileria of Sheep in Aksu,Xinjiang [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1292-1300. |
[10] | LI Na, LIU Chongyang, ZHANG Jingjing, MALIYA Qiqige, ZHU Na, LU Bin, HAI Ying. Isolation,Identification and Drug Resistance Analysis of a Sheep-derived Strain of Clostridium perfringens Type D [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1352-1359. |
[11] | FENG Zhiya, PENG Wanwan, ZHANG Jianping, WU Zhenhui, ZHANG Nan, LI Shuwei, SHI Ruijun. Cloning and Bioinformatics Analysis of KRT79 Gene,and the Effects of Androgens on Its Expression and Distribution of Skin in Hetian Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 562-573. |
[12] | LIU Shixiong, LI Xiao, LI Xueqiang, XU Zixuan, LI Songjian, DU Rui, XUE Chen, LIU Dacheng. Effects of Compound Bacteria Culture on Growth Performance,Immune Function and Vaccine Antibody Titer of Mongolian-Han Crossbred Mutton Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 718-729. |
[13] | HE Xiaolong, SHEN Qi, BAO Guosheng, WANG Jiahao, JIANG Ting, YI Huanming, CHENG Xiao, CHEN Jiahong, REN Chunhuan, ZHANG Zijun, WANG Qiangjun. Research Progress on the Fermentation Effect of Microbial Agents on Sheep Manure Compost [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 966-976. |
[14] | XIE Beiyiting, WANG Yue, MENG Chunhua, QIAN Yong, ZHANG Jun, ZHANG Jianli, WANG Huili, CAO Shaoxian, LI Yinxia. Cloning and Sequence Analysis of PSMB9 Gene in Hu Sheep and Its Effect on Myoblast Proliferation [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 1-12. |
[15] | YU Tianli, HE Zhenlian, HAN Yijing, REN Jingyu, XIA Chengqiang, PEI Caixia. Effects of Adding Polygonum hydropiper L.to High-concentrate Diet on Fermentation Parameters and Flora of Rumen in Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 205-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||