China Animal Husbandry & Veterinary Medicine ›› 2022, Vol. 49 ›› Issue (1): 232-240.doi: 10.16431/j.cnki.1671-7236.2022.01.025
• Genetics and Breeding • Previous Articles Next Articles
ZHANG Jingyao, ZHANG Lu, GAO Shuai
Received:
2021-08-18
Online:
2022-01-05
Published:
2021-12-29
CLC Number:
ZHANG Jingyao, ZHANG Lu, GAO Shuai. Chromatin Remodeling During Mammalian Zygotic Genome Activation[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(1): 232-240.
[1] XU Q,XIE W.Epigenome in early mammalian development:Inheritance,reprogramming and establishment[J].Trends in Cell Biology,2018,28(3):237-253. [2] ECKERSLEY-MASLIN M A,ALDA-CATALINAS C,REIK W.Dynamics of the epigenetic landscape during the maternal-to-zygotic transition[J].Nature Reviews Molecular Cell Biology,2018,19(7):436-450. [3] LI L,LU X,DEAN J.The maternal to zygotic transition in mammals[J].Molecular Aspects of Medicine,2013,34(5):919-938. [4] VASTENHOUW N L,CAO W X,LIPSHITZ H D.The maternal-to-zygotic transition revisited[J].Development,2019,146(11):dev161471. [5] TADROS W,LIPSHITZ H D.The maternal-to-zygotic transition:A play in two acts[J].Development,2009,136(18):3033-3042. [6] LEE M T,BONNEAU A R,GIRALDEZ A J.Zygotic genome activation during the maternal-to-zygotic transition[J].Annual Review of Cell and Developmental Biology,2014,30:581-613. [7] WANG H,DEY S K.Roadmap to embryo implantation:Clues from mouse models[J].Nature Reviews Genetics,2006,7(3):185-199. [8] HAMATANI T,CARTER M G,SHAROV A A,et al.Dynamics of global gene expression changes during mouse preimplantation development[J].Developmental Cell,2004,6(1):117-131. [9] ABE K,YAMAMOTO R,FRANKE V,et al.The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3' processing[J].The EMBO Journal,2015,34(11):1523-1537. [10] KIGAMI D,MINAMI N,TAKAYAMA H,et al.MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos[J].Biology of Reproduction,2003,68(2):651-654. [11] ABE K I,FUNAYA S,TSUKIOKA D,et al.Minor zygotic gene activation is essential for mouse preimplantation development[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(29):E6780-E6788. [12] SCHULTZ R M.The molecular foundations of the maternal to zygotic transition in the preimplantation embryo[J].Human Reproduction Update,2002,8(4):323-331. [13] GRAF A,KREBS S,ZAKHARTCHENKO V,et al.Fine mapping of genome activation in bovine embryos by RNA sequencing[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(11):4139-4144. [14] SCHULTZ G A,HEYNER S.Gene expression in pre-implantation mammalian embryos[J].Mutation Research,1992,296(1-2):17-31. [15] JUKAM D,SHARIATI S,SKOTHEIM J M.Zygotic genome activation in vertebrates[J].Developmental Cell,2017,42(4):316-332. [16] THERIZOLS P,ILLINGWORTH R S,COURILLEAU C,et al.Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells[J].Science,2014,346(6214):1238-1242. [17] GONZALEZ-SANDOVAL A,TOWBIN B D,KALCK V,et al.Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate in C.elegans embryos[J].Cell,2015,163(6):1333-1347. [18] RAO S S,HUNTLEY M H,DURAND N C,et al.A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J].Cell,2014,159(7):1665-1680. [19] LIEBERMAN-AIDEN E,VAN BERKUM N L,WILLIAMS L,et al.Comprehensive mapping of long-range interactions reveals folding principles of the human genome[J].Science,2009,326(5950):289-293. [20] DIXON J R,SELVARAJ S,YUE F,et al.Topological domains in mammalian genomes identified by analysis of chromatin interactions[J].Nature,2012,485(7398):376-380. [21] DEKKER J,RIPPE K,DEKKER M,et al.Capturing chromosome conformation[J].Science,2002,295(5558):1306-1311. [22] EA V,BAUDEMENT M O,LESNE A,et al.Contribution of topological domains and loop formation to 3D chromatin organization[J].Genes,2015,6(3):734-750. [23] Du Z,ZHENG H,KAWAMURA Y K,et al.Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos[J].Molecular Cell,2020,77(4):825-839. [24] FLYAMER I M,GASSLER J,IMAKAEV M,et al.Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition[J].Nature,2017,544(7648):110-114. [25] GU C,LIU S,WU Q,et al.Integrative single-cell analysis of transcriptome,DNA methylome and chromatin accessibility in mouse oocytes[J].Cell Research,2019,29(2):110-123. [26] KLEMM S L,SHIPONY Z,GREENLEAF W J.Chromatin accessibility and the regulatory epigenome[J].Nature Reviews Genetics,2019,20(4):207-220. [27] TSOMPANA M,BUCK M J.Chromatin accessibility:A window into the genome[J].Epigenetics Chromatin,2014,7(1):33. [28] ZHUO B,YU J,CHANG L,et al.Quantitative analysis of chromatin accessibility in mouse embryonic fibroblasts[J].Biochemical and Biophysical Research Communications,2017,493(1):814-820. [29] 柯玉文,刘江.动物早期胚胎发育中染色质结构的继承和重编程[J].遗传,2018,40(11):977-987. KE Y W,LIU J.The inheritance and reprogramming of chromatin structure in early animal embryos[J].Hereditas,2018,40(11):977-987.(in Chinese) [30] JIN W,TANG Q,WAN M,et al.Genome-wide detection of DNase Ⅰ hypersensitive sites in single cells and FFPE tissue samples[J].Nature,2015,528(7580):142-146. [31] BUENROSTRO J D,WU B,LITZENBURGER U M,et al.Single-cell chromatin accessibility reveals principles of regulatory variation[J].Nature,2015,523(7561):486-490. [32] GUO F,LI L,LI J,et al.Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells[J].Cell Research,2017,27(8):967-988. [33] XIA W,XIE W.Rebooting the epigenomes during mammalian early embryogenesis[J].Stem Cell Reports,2020,15(6):1158-1175. [34] BURTON A,TORRES-PADILLA M E.Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis[J].Nature Reviews Molecular Cell Biology,2014,15(11):723-734. [35] ZHENG H,XIE W.The role of 3D genome organization in development and cell differentiation[J].Nature Reviews Molecular Cell Biology,2019,20(9):535-550. [36] DU Z,ZHANG K,XIE W.Epigenetic reprogramming in early animal development[J].Cold Spring Harbor Perspectives in Biology,2021,16:a039677. [37] POPKEN J,BRERO A,KOEHLER D,et al.Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos[J].Nucleus,2014,5(6):555-589. [38] ANCELIN K,SYX L,BORENSZTEIN M,et al.Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation[J].Elife,2016,5:e8851. [39] KE Y,XU Y,CHEN X,et al.3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis[J].Cell,2017,170(2):367-381. [40] ADENOT P G,MERCIER Y,RENARD J P,et al.Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos[J].Development,1997,124(22):4615-4625. [41] BOSKOVIC A,EID A,PONTABRY J,et al.Higher chromatin mobility supports totipotency and precedes pluripotency in vivo[J].Genes & Development,2014,28(10):1042-1047. [42] XU R,LI C,LIU X,et al.Insights into epigenetic patterns in mammalian early embryos[J].Protein Cell,2021,12(1):7-28. [43] BATTULIN N,FISHMAN V S,MAZUR A M,et al.Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach[J].Genome Biology,2015,16:77. [44] DU Z,ZHENG H,HUANG B,et al.Allelic reprogramming of 3D chromatin architecture during early mammalian development[J].Nature,2017,547(7662):232-235. [45] CHEN X,KE Y,WU K,et al.Key role for CTCF in establishing chromatin structure in human embryos[J].Nature,2019,576(7786):306-310. [46] LI F,WANG D,SONG R,et al.The asynchronous establishment of chromatin 3D architecture between in vitro fertilized and uniparental preimplantation pig embryos[J].Genome Biology,2020,21(1):203. [47] WU J,HUANG B,CHEN H,et al.The landscape of accessible chromatin in mammalian preimplantation embryos[J].Nature,2016,534(7609):652-657. [48] MACFARLAN T S,GIFFORD W D,DRISCOLL S,et al.Embryonic stem cell potency fluctuates with endogenous retrovirus activity[J].Nature,2012,487(7405):57-63. [49] LI L,GUO F,GAO Y,et al.Single-cell multi-omics sequencing of human early embryos[J].Nature Cell Biology,2018,20(7):847-858. [50] GAO L,WU K,LIU Z,et al.Chromatin accessibility landscape in human early embryos and its association with evolution[J].Cell,2018,173(1):248-259. [51] 荐思婧,宁超,高磊,等.表观遗传信息在动物中的跨代遗传和重编程[J].中国科学(生命科学),2021,51(5):556-566. JIAN S J,NING C,GAO L,et al.The transgenerational inheritance and reprogramming of epigenetic information in animals[J].Scientia Sinica (Vitae),2021,51(5):556-566.(in Chinese) [52] WU J,XU J,LIU B,et al.Chromatin analysis in human early development reveals epigenetic transition during ZGA[J].Nature,2018,557(7704):256-260. [53] 卢绪坤,李元元,颉伟.哺乳动物早期胚胎发育中表观遗传信息的传递和重编程[J].中国细胞生物学学报,2019,41(5):822-833. LU X K,LI Y Y,XIE W.The inheritance and reprogramming of epigenetic information during mammalian early embryogenesis[J].Chinese Journal of Cell Biology,2019,41(5):822-833.(in Chinese) [54] DAHL J A,JUNG I,AANES H,et al.Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition[J].Nature,2016,537(7621):548-552. [55] HALSTEAD M M,MA X,ZHOU C,et al.Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation[J].Nature Communications,2020,11(1):4654. [56] MING H,SUN J,PASQUARIELLO R,et al.The landscape of accessible chromatin in bovine oocytes and early embryos[J].Epigenetics,2021,16(3):300-312. [57] LU F,LIU Y,INOUE A,et al.Establishing chromatin regulatory landscape during mouse preimplantation development[J].Cell,2016,165(6):1375-1388. [58] HENDRICKSON P G,DORAIS J A,GROW E J,et al.Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons[J].Nature Genetics,2017,49(6):925-934. [59] GUO M,ZHANG Y,ZHOU J,et al.Precise temporal regulation of Dux is important for embryo development[J].Cell Research,2019,29(11):956-959. [60] DE IACO A,COUDRAY A,DUC J,et al.DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells[J].EMBO Reports,2019,20(5):e47382. |
[1] | ZHANG Zhihao, LU Ligang, ZHANG Zijing, WANG Xiangnan, MIN Jia, HAN Yiwei, PENG Shengkun, LUAN Manru, LIU Aobing, SHI Qiaoting, WANG Eryao. Study on the Role of miRNA from Uterine Exosomes in Embryo Development and Implantation of Xianan Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2691-2704. |
[2] | LI Zhiyi, LI Jie, CHEN Chuwen, NONG Yi, WANG Jiayan, WANG Zi, WU Jinbo, LI Zhixiong. Analysis and Identification of miRNA in Leg Muscle Tissue of Tibetan Chicken Embryos at Different Developmental Stages [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1681-1693. |
[3] | XU Guangyong, LIU Zhentian, CHEN Xiangfei, ZHANG Meijie, DU Tao, ZHANG Junbo, LIU Zhihui, XING Xuesong, DU Fuliang. Study on Embryonic Developmental Potential of Embryos Derived from Ovum Pickup Oocytes and Fertilization in vitro in Wagyu [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 730-739. |
[4] | SUN Huimin, FAN Bingfeng, ZHANG Xulin, SHAO Jing, LIU Lixiang, XU Baozeng. Transcriptomic Analysis of Blood in Early Pregnancy at Different Time Points in Sika Deer [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(9): 3892-3908. |
[5] | JIANG Xinrui, FENG Helong, YANG Hongchun, JIANG Liren, WANG Hongcai, ZENG Zhe, ZUO Bo, ZHANG Tengfei, LUO Qingping, SHANG Yu, WEN Guoyuan. Effect of Bamboo Leaf Flavonoid on Immune Efficacy of Chick Embryo Inoculation with Newcastle Disease Vaccine [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(9): 4174-4181. |
[6] | ZHENG Xiangmin, WANG Yuqi, XU Bingjie, SUN Zhaoyang, GAO Qingshan, FANG Nanzhu, JIN Qingguo. Effect of Cepharanthine on Anti-apoptotic Ability of Bovine Oocytes and Early Embryos in vitro [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(7): 2943-2952. |
[7] | ZHANG Xueping, LIU Jiayi, WANG Yanfang, WU Tianwen. Construction of ACTA1 Gene Knockout PEFs Cell Lines by CRISPR/Cas9 Editing System [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(6): 2273-2284. |
[8] | FU Binbin, WANG Dongsheng, HE Fan, LI Qingchun, QI Mengfan, ZHANG Huapeng, HUANG Tao. Study on the Targeted Regulation of Wnt7a Gene Expression by miR-192 in Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(6): 2300-2307. |
[9] | LI Junxian, REN Tao, YANG Jian, GUO Yang, WEN Anlin, OU Deyuan. Screening of Traditional Chinese Medicine for Anti-avian Infectious Bronchitis Virus [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(3): 1241-1249. |
[10] | MO Xianhong, TAO Qinghua, FANG Yi, LIANG Jing, ZHANG Jiayin, LIANG Xiaohang, XU Zhenjun. Effect of Leukemia Inhibitory Factor on Developmental Capacity of Bovine Oocyte [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 462-469. |
[11] | LIAO Siyu, ZHENG Xin, DAI Qi, XU Shiyi, ZHANG Tianxu, ZHANG Xiuqiao, GUI Chun. Study on the Anti-AIV-H9N2 Activity of the Ethyl Acetate Extract from Alternanthera philoxeroides in vitro and in vivo [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 759-769. |
[12] | LUO Anfeng, ZHANG Yuqing, WANG Xinxin, YANG Caixia, XIE Di. Effects of Ola1 on Early Embryonic Development of Mouse in vitro [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(11): 4871-4879. |
[13] | ZHONG Yueyun, YANG Shuzhan, CHEN Feiyue, LU Zhier, LI Bingxin, LI Wanyan, TIAN Yunbo, HUANG Yunmao, XU Danning, CAO Nan. Effects of LPS on Apoptosis of Goose Embryo-derived Hepatocytes ROS/p38/MAPK Signaling Pathway [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(6): 2224-2232. |
[14] | XIANG Decai, LI Shuiying, ZHANG Bin, ZHANG Yan, LIANG Jiachong, LYU Chunrong, HONG Qionghua, QUAN Guobo, WU Guoquan. The Study on the Role of Fetal Bovine Serum Supplementation During Postwarming Culture on Vitrified Porcine Parthenogenetic Blastocysts [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(2): 606-615. |
[15] | XU Xi, YANG Yuze, HAO Haisheng, DU Weihua, ZHU Huabin, YANG Baigao, ZHAO Xueming. Advances in Oocyte and Embryo Defatting Methods for Domestic Animals [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(2): 626-637. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||