China Animal Husbandry & Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (9): 3483-3490.doi: 10.16431/j.cnki.1671-7236.2021.09.041
• Basic Veterinary Medicine • Previous Articles Next Articles
YUAN Weiyi, LIN Xiaofeng, ZHANG Yuhao, XIAO Jinnan, WANG Yan
Revised:
2021-04-16
Online:
2021-09-20
Published:
2021-09-17
CLC Number:
YUAN Weiyi, LIN Xiaofeng, ZHANG Yuhao, XIAO Jinnan, WANG Yan. Research Progress on Antimicrobial and Disinfectant Resistance of Methicillin-resistant Staphylococcus pseudintermedius in Canine Pyoderma[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(9): 3483-3490.
[1] RAFATPANAH S, RAD M, MOVASSAGHI A R, KHOSHNEGAH J, et al. Clinical, bacteriological and histopathological aspects of first-time pyoderma in a population of Iranian domestic dogs:A retrospective study[J]. Iran Journal of Veterinary Research, 2020, 21(2):130-135. [2] ABOUELKHAIR M A, BEMIS D A, KANIA S A, et al. Characterization of recombinant wild-type and nontoxigenic protein a from Staphylococcus pseudintermedius[J]. Virulence, 2018, 9(1):1050-1061. [3] FADOK V A, IRWIN K.Sodium hypochlorite/salicylic acid shampoo for treatment of canine staphylococcal pyoderma[J]. Journal of the American Animal Hospital Association, 2019, 55(3):117-123. [4] BÄUMER W, BIZIKOVA P, JACOB M, et al. Establishing a canine superficial pyoderma model[J]. Applied Microbiology and Biotechnology, 2017, 122(2):331-337. [5] HYUN J E, CHUNG T H, HWANG C Y, et al. Identification of VIM-2 metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from dogs with pyoderma and otitis in Korea[J]. Veterinary Dermatology, 2018, 29(3):186-191. [6] AALTONEN K, KANT R, EKLUND M, et al. Streptococcus halichoeri:Comparative genomics of an emerging pathogen[J]. International Journal of Genomics, 2020, 18:8708305. [7] ZHENG Y, QIN C, ZHANG X, et al. The tst gene associated Staphylococcus aureus pathogenicity island facilitates its pathogenesis by promoting the secretion of inflammatory cytokines and inducing immune suppression[J]. Microbial Pathogenesis, 2020, 138:103797. [8] DEVRIESE L A, VANCANNEYT M, BAELE M, et al. Staphylococcus pseudintermedius sp.nov., a coagulase-positive species from animals[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 4):1569-1573. [9] PARLET C P, BROWN M M, HORSWILL A R.Commensal staphylococci influence Staphylococcus aureus skin colonization and disease[J]. Trends Microbiology, 2019, 27(6):497-507. [10] BERENDS E T M, ZHENG X, ZWACK E E, et al. Staphylococcus aureus impairs the function of and kills human dendritic cells via the lukab toxin[J]. mBio, 2019, 10(1):e01918-18. [11] BALRAADJSING P P, DE JONG E C, VAN WAMEL W J B, et al. Dendritic cells internalize Staphylococcus aureus more efficiently than Staphylococcus epidermidis, but do not differ in induction of antigen-specific T cell proliferation[J]. Microorganisms, 2019, 8(1):19. [12] SEWID A H, HASSAN M N, AMMAR A M, et al. Staphylococcus pseudintermedius Sbi paralogs inhibit complement and bind IgM IgG Fc and Fab[J]. PLoS One, 2019, 14(7):e0219817. [13] 周传铎, 赵然, 金艺鹏, 等.北京地区警犬皮肤伪中间型葡萄球菌药敏试验及耐药基因筛查[J]. 中国兽医杂志, 2016, 52(11):100-103. ZHOU C D, ZHAO R, JIN Y P, et al. Antibacterial sensitive test and drug-resistant genetic screening for Staphylococcus pseudintermedius from the skins of police dogs in Beijing area[J]. Chinese Journal of Veterinary Medicine, 2016, 52(11):100-103.(in Chinese) [14] 刘文静, 徐英春, 杨启文, 等.2019年北京协和医院细菌耐药性分析[J]. 协和医学杂志:2021, 12(2):202-209. LIU W J, XU Y C, YANG Q W, et al. Analysis of antimicrobial resistance in Peking Union Medical College Hospital in 2019[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2):202-209.(in Chinese) [15] FEßLER A T, SCHUENEMANN R, KADLEC K, et al. Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) among employees and in the environment of a small animal hospital[J]. Veterinary Microbiology, 2018, 221:153-158. [16] WORTHING K A, ABRAHAM S, COOMBS G W, et al. Clonal diversity and geographic distribution of methicillin-resistant Staphylococcus pseudintermedius from Australian animals:Discovery of novel sequence types[J]. Veterinary Microbiology, 2018, 213:58-65. [17] NISA S, BERCKER C, MIDWINTER A C, et al. Combining MALDI-TOF and genomics in the study of methicillin resistant and multidrug resistant Staphylococcus pseudintermedius in New Zealand[J]. Scientific Reports, 2019, 9(1):1271. [18] 国家卫生计生委合理用药专家委员会.2018年全国细菌耐药监测报告[J]. 中国合理用药探索, 2020, 17(1):1-10. COMMITTEE OF EXPERTS ON RATIONAL DRUG USE OF THE NATIONAL HEALTH AND FAMILY PLANNING COMMISSION OF THE P.R.CHINA.2018 National bacterial resistance surveillance report[J]. Chinese Journal of Rational Drug Use, 2020, 17(1):1-10.(in Chinese) [19] CRAFT K M, NGUYEN J M, BERG L J, et al. Methicillin-resistant Staphylococcus aureus (MRSA):Antibiotic-resistance and the biofilm phenotype[J]. Medchemcomm, 2019, 10(8):1231-1241. [20] WU S, LIN K, LIU Y, et al. Two-component signaling pathways modulate drug resistance of Staphylococcus aureus (Review)[J]. Biomedical Reports, 2020, 13(2):5. [21] BAJWA J.Canine superficial pyoderma and therapeutic considerations[J]. Canadian Veterinary Journal, 2016, 57(2):204-206. [22] GAGETTI P, WATTAM A R, GIACOBONI G, et al. Identification and molecular epidemiology of methicillin resistant Staphylococcus pseudintermedius strains isolated from canine clinical samples in Argentina[J]. BMC Veterinary Research, 2019, 15(1):264. [23] GONZÁLEZ-DOMÍNGUEZ M S, CARVAJAL H D, CALLE-ECHEVERRI D A, et al. Molecular detection and characterization of the mecA and nuc genes from Staphylococcus species (S.aureus, S.pseudintermedius, and S.schleiferi) isolated from dogs suffering superficial pyoderma and their antimicrobial resistance profiles[J]. Frontiers in Veterinary Science, 2020, 7:376. [24] WEGENER A, BROENS E M, ZOMER A, et al. Comparative genomics of phenotypic antimicrobial resistances in methicillin-resistant Staphylococcus pseudintermedius of canine origin[J]. Veterinary Microbiology, 2018, 225:125-131. [25] FROSINI S M, BOND R, RANTALA M, et al. Genetic resistance determinants to fusidic acid and chlorhexidine in variably susceptible staphylococci from dogs[J]. BMC Microbiology, 2019, 19(1):81. [26] RAFFERTY R, ROBINSON V H, HARRIS J, et al. A pilot study of the in vitro antimicrobial activity and in vivo residual activity of chlorhexidine and acetic acid/boric acid impregnated cleansing wipes[J]. BMC Veterinary Research, 2019, 15(1):382. [27] WALKER M A, SINGH A, GIBSON T W, et al. Presence of qac genes in clinical isolates of methicillin-resistant and methicillin-susceptible Staphylococcus pseudintermedius and their impact on chlorhexidine digluconate susceptibility[J]. Veterinary Surgery, 2020, 49(5):971-976. [28] MURAYAMA N, NAGATA M, TERADA Y, et al. In vitro antiseptic susceptibilities for Staphylococcus pseudintermedius isolated from canine superficial pyoderma in Japan[J]. Veterinary Dermatology, 2013, 24(1):126-129. [29] 向蓉, 贾潇岳, 陈光辉, 等.社区和医院获得性耐甲氧西林金黄色葡萄球菌耐药基因及耐消毒剂基因的检测[J]. 中国消毒学杂志, 2020, 37(6):436-440. XIANG R, JIA X Y, CHEN G H, et al. Detection of drug resistance gene and disinfectant resistance gene of methicillin-resistant Staphylococcus aureus in community and hospital[J]. Chinese Journal of Disinfection, 2020, 37(6):436-440.(in Chinese) [30] 纵帅, 马萍, 徐萍萍, 等.临床分离耐甲氧西林金黄色葡萄球菌耐药表型及耐消毒剂基因检测[J]. 中国消毒学杂志, 2016, 33(9):841-844. ZONG S, MA P, XU P P, et al. Detection of antibiotic resistance phenotype and disinfectant resistant gene of MRSA isolated from nosocomial infection[J]. Chinese Journal of Disinfection, 2016, 33(9):841-844.(in Chinese) [31] 孟含, 李庆, 贺苏皖, 等.市售猪肉金黄色葡萄球菌的分离及菌株耐消毒剂基因的检测[J]. 现代食品科技, 2020, 36(4):296-303. MENG H, LI Q, HE S W, et al. Isolation of Staphylococcus aureus from pork source and the detection of disinfectant resistance genes[J]. Modern Food Science and Technology, 2020, 36(4):296-303.(in Chinese) [32] LIU Q, ZHAO H, HAN L, et al. Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA)[J]. Diagnostic Microbiology and Infectious, 2015, 82(4):278-283. [33] WEST A M, TESKA P J, LINEBACK C B, et al. Strain, disinfectant, concentration, and contact time quantitatively impact disinfectant efficacy[J]. Antimicrobial Resistance and Infection Control, 2018, 7:49. [34] LINEBACK C B, NKEMNGONG C A, WU S T, et al. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds[J] .Antimicrobial Resistance and Infection Control, 2018, 7:154. [35] KONG H, FANG L, JIANG R, et al. Distribution of sasX, pvl, and qacA/B genes in epidemic methicillin-resistant Staphylococcus aureus strains isolated from East China[J]. Infection and Drug Resistance, 2018, 11:55-59. [36] NEUBERGER A, DU D, LUISI B F.Structure and mechanism of bacterial tripartite efflux pumps[J]. Research in Microbiology, 2018, 169(7-8):401-413. [37] SUN Y, HU X, GUO D, SHI C, et al. Disinfectant resistance profiles and biofilm formation capacity of Escherichia coli isolated from retail chicken[J]. Microbial Drug Resistance, 2019, 25(5):703-711. [38] YOON E J, CHABANE Y N, GOUSSARD S, et al. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii[J]. mBio, 2015, 6(2):e00309-15. [39] BAY D C, TURNER R J.Diversity and evolution of the small multidrug resistance protein family[J]. BMC Evolutionary Biology, 2009, 9:140. [40] SUBEDI D, VIJAY A K, WILLCOX M, et al. Study of disinfectant resistance genes in ocular isolates of Pseudomonas aeruginosa[J]. Antibiotics (Basel), 2018, 7(4):88. [41] WANG Q, XU Y, ZHAO X, et al. A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation[J]. Journal of the American Chemical Society, 2007, 129(20):6380-6381. [42] WORTHING K A, MARCUS A, ABRAHAM S, et al. Qac genes and biocide tolerance in clinical veterinary methicillin-resistant and methicillin-susceptible Staphylococcus aureus and Staphylococcus pseudintermedius[J]. Veterinary Microbiology, 2018, 216:153-158. [43] SMITH J T, AMADOR S, MCGONAGLE C J, et al. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States[J]. Communications Biology, 2020, 3(1):282. [44] LU M, GONG T, ZHANG A, et al. Mobile genetic elements in Streptococci[J]. Current Issues in Molecular Biology, 2019, 32:123-166. [45] MC CARLIE S, BOUCHER C E, BRAGG R R, et al. Molecular basis of bacterial disinfectant resistance[J]. Drug Resistance Updates, 2020, 48:100672. [46] DURRANT M G, LI M M, SIRANOSIAN B A, et al. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation[J]. Cell Host & Microbe, 2020, 28(5):767. [47] HOSSEINI R, KUEPPER J, KOEBBING S, et al. Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements[J]. Microbial Biotechnology, 2017, 10(6):1558-1568. [48] NICOLAE DOPCEA G, DOPCEA I, NANU A E, et al. Resistance and cross-resistance in Staphylococcus spp.strains following prolonged exposure to different antiseptics[J]. Journal of Global Antimicrobial Resistance, 2020, 21:399-404. [49] WU D, LU R, CHEN Y, et al. Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus[J]. Journal of Global Antimicrobial Resistance, 2016, 7:61-66. [50] BHARDWAJ P, HANS A, RUIKAR K, et al. Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure[J]. Antimicrobial Agents and Chemotherapy, 2017, 62(1):e01235-17. [51] DENNY J, MUNRO C L.Chlorhexidine bathing effects on health-care-associated infections[J]. Biological Research for Nursing, 2017, 19(2):123-136. [52] KHAN S, BEATTIE T K, KNAPP C W, et al. Relationship between antibiotic-and disinfectant-resistance profiles in bacteria harvested from tap water[J]. Chemosphere, 2016, 152:132-141. [53] MAERTENS H, DE REU K, MEYER E, et al. Limited association between disinfectant use and either antibiotic or disinfectant susceptibility of Escherichia coli in both poultry and pig husbandry[J]. BMC Veterinary Research, 2019, 15(1):310. [54] HIJAZI K, MUKHOPADHYA I, ABBOTT F, et al. Susceptibility to chlorhexidine amongst multidrugresistant clinical isolates of Staphylococcus epidermidis from bloodstream infections[J]. International Journal of Antimicrobial Agents, 2016, 48(1):86-90. [55] WALES A D, DAVIES R H.Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens[J]. Antibiotics (Basel), 2015, 4(4):567-604. [56] PARTRIDGE S R, KWONG S M, FIRTH N, et al. Mobile genetic elements associated with antimicrobial resistance[J]. Clinical Microbiology Reviews, 2018, 31(4):e00088-17. [57] GILLINGS M R.Lateral gene transfer, bacterial genome evolution, and the anthropocene[J]. Annals of the New York Academy of Sciences, 2017, 1389(1):20-36. [58] PAL C, ASIANI K, ARYA S, et al. Metal resistance and its association with antibiotic resistance[J]. Advances in Microbial Physiology, 2017, 70:261-313. [59] GNANADHAS D P, MARATHE S A, CHAKRAVORTTY D, et al. Biocides-resistance, cross-resistance mechanisms and assessment[J]. Expert Opinion on Investigational Drugs, 2013, 22(2):191-206. [60] PAL C, BENGTSSON-PALME J, KRISTIANSSON E, et al. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential[J]. BMC Genomics, 2015, 16:964. [61] PAUL D, CHAKRABORTY R, MANDAL S M.Biocides and health-care agents are more than just antibiotics:Inducing cross to co-resistance in microbes[J]. Ecotoxicology and Environmental Safety, 2019, 174:601-610. [62] KIM M, WEIGAND MR, OH S, et al. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance[J]. Applied and Environmental Microbiology, 2018, 84(17):e01201-18. [63] AMSALU A, SAPULA S A, DE BARROS LOPES M, et al. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches:A case study in the development of multidrug resistance in environmental hotspots[J]. Microorganisms, 2020, 8(11):1647. [64] TENG Z H, GUO Y, LIU X Q, et al. The aflavin-3, 3'-digallate increases the antibacterial activity of β-lactam antibiotics by inhibiting metallo-β-lactamase activity[J]. Journal of Cellular and Molecular Medicine, 2019, 23(10):6955-6964. [65] LARSUPROM L, RUNGROJ N, LEKCHAROENSUK C, et al. In vitro antibacterial activity of mangosteen (Garcinia mangostana Linn.) crude extract against Staphylococcus pseudintermedius isolates from canine pyoderma[J]. Veterinary Dermatology, 2019, 30(6):487-490. [66] BÄUMER W, JACOBS M, TAMAMOTO-MOCHIZUKI C, et al. Efficacy study of a topical treatment with a plant extract with antibiofilm activities using an in vivo model of canine superficial pyoderma[J]. Veterinary Dermatology, 2020, 31:86-89. [67] 彭华, 李淑红, 聂佳伟, 等.犬脓皮病病原菌分离鉴定及耐药性分析[J]. 畜牧与饲料科学, 2019, 40(8):104-106. PENG H, LI S H, NIE J W, et al. Isolation, identification and antimicrobial resistance profile of pathogenic bacteria of canine pyoderma[J]. Animal Husbandry and Feed Science, 2019, 40(8):104-106.(in Chinese) [68] TRESCH M, MEVISSEN M, AYRLE H, et al. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review[J]. BMC Veterinary Research, 2019, 15(1):174. |
[1] | QUAN Chenyu, ZHOU Yingning, PU Chanjuan, CHEN Tingting, XU Xinting, LU Bingxia, XU Yilan, ZHAO Shuo, YANG Xunye, DUAN Qunpeng, QIN Yibin, LI Bin, CHEN Zhongwei, HE Ying. Isolation,Identification and Drug Resistance Analysis of Streptococcus agalactiae from Tilapia in Guangxi [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2893-2903. |
[2] | YU Kun, ZHAO Jie, MA Qin, SHI Yanhong, ZHANG Xiao, LIU Zihan, ZHANG Xinting, WANG Jianhua, LI Yufeng. Isolation,Identification,Drug Resistance and Pathogenicity Analysis of Salmonella Enteritidis from Commercial Meat Ducks [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2353-2363. |
[3] | LONG Baoqin, WANG Huixiang, YU Linjin, HAERLEHA·Amantai, CHEN Haoran, XU Mengjiao, SHI Longxing, LI Youwen. Isolation,Identification and Biological Characteristics Analysis of Two Strains of Klebsiella pneumoniae from Quail [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2364-2378. |
[4] | WU Jiaxin, SUN Yue, MAO Wei, LIU Shuying, YIN Kaiwen, ZHANG Zhidan, HAN Kaifan, ZHAO Hongxia. Isolation and Identification of Mannheimia haemolytica from Sheep Respiratory Tract and Its Pathogenicity and Drug Resistance [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2421-2431. |
[5] | LIN Bingbing, ZHAO Hongzhe, GUAN Na, WU Rigumula, QI Gen, ZHANG Yang, WEN Yongjun, WANG Fengxue. Isolation,Identification and Drug Resistance Analysis of Clostridium perfringens from Cattle in Some Areas of Inner Mongolia [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1873-1883. |
[6] | HE Yuxuan, CIRING Zhuoma, WANG Yu, LIU Huaizhi, YANG Jinpeng, WEI Mingbang, SHANG Peng. Isolation and Identification of Tibetan Pig-derived Enterococcus faecalis and Detection of Drug Resistance and Virulence Genes [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1895-1904. |
[7] | RU Mengke, LI Suixiang, WU Xueqin, YAN Yuzhang, WANG Lu, CHENG Haipeng. Whole Genome Sequencing and Bioinformatics Analysis of a Strain of Proteus mirabilis Isolated from Chicken [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 977-989. |
[8] | GAO Jiaojiao, ZHENG Nan, SHAO Wei, CHEN He, MA Xianlan, ZHAO Yankun. Isolation and Identification of Lactogenic Streptococcus agalactiae and Characterisation of Drug Resistance and Virulence and Genome Analysis [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1301-1316. |
[9] | LI Na, LIU Chongyang, ZHANG Jingjing, MALIYA Qiqige, ZHU Na, LU Bin, HAI Ying. Isolation,Identification and Drug Resistance Analysis of a Sheep-derived Strain of Clostridium perfringens Type D [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1352-1359. |
[10] | LI Yang, XU Jingjing, ZHANG Xiaoyu, LI Nana, YU Xingyu, LENG Qingwen, LI Yanfang, QU Yonggang. Isolation,Identification,Drug Resistance Analysis,and Virulence Gene Detection of Staphylococcus aureus from a Large-scale Dairy Farm in Xinjiang [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1370-1382. |
[11] | DAI Tingting, CHEN Haiyu, DUAN Chuchu, LIU Rongchang, LI Yurong, YAN Shuhan, CHEN Mengshi, LIU Luwei, BAO Yinli, CHENG Yanqing, LIN Weiming, HUANG Cuiqin, ZHENG Xintian. Correlation Analysis of Drug Resistance and Virulence Genes of Escherichia coli with Polycolistin Resistance Gene mcr-1 from Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1393-1404. |
[12] | LIU Zewu, FAN Yueyuan, YUANJiarui, GESANG Zhuoga, BAN Dan, BAI Weibing, CHAJinlong, SILANG Yuzhen, FU Guowen. Isolation,Identification and Drug Resistance Analysis of a Strain of Corynebacterium pseudotuberculosis from Goats [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(3): 1405-1415. |
[13] | WAN Baoxia, MENG Lingying, SUN Siyu, ZHAO Yujie, WANG Jiaqi, WANG Qiuju. Analysis of Drug Resistance Genes and Biological Characterization of Goose Derived Bacillus and Lactic Acid Bacteria [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 351-363. |
[14] | LI Nana, YU Xingyu, HOU Gongmingzhu, LI Yang, GUO Yaqi, ZHENG Pei, LI Yanfang, LIANG Yan, HE Gaoming, QU Yonggang. Isolation and Identification,Drug Resistance and Pathogenicity Analysis of Enterobacter hormaechei from Pigs [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 376-388. |
[15] | LIAO Huiqun, ZHAO Mei, ZENG Guohui, SU Renwei, DENG Xianbo. Analysis of Drug Resistance and Virulence Genes of Klebsiella pneumoniae from Moschus berezovskii [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(1): 411-421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||