China Animal Husbandry & Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (9): 3206-3214.doi: 10.16431/j.cnki.1671-7236.2021.09.011
• Physiology and Biochemistry • Previous Articles Next Articles
ZHOU Xiaonan, DING Yanling, WANG Pengfei, ZHAO Zhiyan, ZHAO Lei, ZHANG Yanfeng, MA Ying, KANG Xiaolong
Received:
2021-04-04
Online:
2021-09-20
Published:
2021-09-17
CLC Number:
ZHOU Xiaonan, DING Yanling, WANG Pengfei, ZHAO Zhiyan, ZHAO Lei, ZHANG Yanfeng, MA Ying, KANG Xiaolong. Research Progress on the Role of Alternative Splicing in Muscle Development[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(9): 3206-3214.
[1] WANG Y, WANG Y, LI K, et al. An interactive network of alternative splicing events with prognostic value in geriatric lung adenocarcinoma via the regulation of splicing factors[J]. Bioscience Reports, 2020, 40(10):BSR20202338. [2] BLENCOWE B J.The relationship between alternative splicing and proteomic complexity[J]. Trends in Biochemical Sciences, 2017, 42(6):407-408. [3] ZHAO S.Alternative splicing, RNA-seq and drug discovery[J]. Drug Discovery Today, 2019, 24(6):1258-1267. [4] BARALLE F E, GIUDICE J.Alternative splicing as a regulator of development and tissue identity[J]. Nature Reviews.Molecular Cell Biology, 2017, 18(7):437-451. [5] KIM H K, PHAM M, KO K S, et al. Alternative splicing isoforms in health and disease[J]. Pflugers Archiv:European Journal of Physiology, 2018, 470(7):995-1016. [6] XU B, SHI Y, WU Y, et al. Role of RNA secondary structures in regulating Dscam alternative splicing[J]. Biochimica et Biophysica Acta, 2019, 1862(11-12):194381. [7] JIN Y, DONG H, SHI Y, et al. Mutually exclusive alternative splicing of pre-mRNAs[J]. Wiley Interdisciplinary Reviews.RNA, 2018, 9(3):e1468. [8] PLASCHKA C, LIN P C, CHARENTON C, et al. Prespliceosome structure provides insights into spliceosome assembly and regulation[J]. Nature, 2018, 559(7714):419-422. [9] FISZBEIN A, KRICK K S, BEGG B E, et al. Exon-mediated activation of transcription starts[J]. Cell, 2019, 179(7):1551-1565. [10] WANG Y, LIU J, HUANG B O, et al. Mechanism of alternative splicing and its regulation[J]. Biomedical Reports, 2015, 3(2):152-158. [11] CHEN M, MANLEY J L.Mechanisms of alternative splicing regulation:Insights from molecular and genomics approaches[J]. Nature Reviews.Molecular Cell Biology, 2009, 10(11):741-754. [12] BAEZA-CENTURION P, MINANA B, VALCARCEL J, et al. Mutations primarily alter the inclusion of alternatively spliced exons[J]. eLife, 2020, 9:e59959. [13] RONG S, BUERER L, RHINE C L, et al. Mutational bias and the protein code shape the evolution of splicing enhancers[J]. Nature Communications, 2020, 11(1):2845. [14] CHEN S Y, LI C, JIA X, et al. Sequence and evolutionary features for the alternatively spliced exons of eukaryotic genes[J]. International Journal of Molecular Sciences, 2019, 20(15):3834. [15] ROGERS S O.Integrated evolution of ribosomal RNAs, introns, and intron nurseries[J]. Genetica, 2019, 147(2):103-119. [16] MOVASSAT M, FOROUZMAND E, REESE F, et al. Exon size and sequence conservation improves identification of splice-altering nucleotides[J]. RNA, 2019, 25(12):1793-1805. [17] GONZALEZ-HILARION S, PAULET D, LEE K T, et al. Intron retention-dependent gene regulation in Cryptococcus neoformans[J]. Scientific Reports, 2016, 6:32252. [18] POVERENNAYA I V, ROYTBERG M A.Spliceosomal introns:Features, functions, and evolution[J]. Biochemistry.Biokhimiia, 2020, 85(7):725-734. [19] KEDZIERSKA H, PIEKIELKO-WITKOWSKA A.Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer[J]. Cancer letters, 2017, 396:53-65. [20] YANG Q, ZHAO J, ZHANG W, et al. Aberrant alternative splicing in breast cancer[J]. Journal of Molecular Cell Biology, 2019, 11(10):920-929. [21] MELO J P, KALYNA M, DUQUE P.Current challenges in studying alternative splicing in plants:The case of physcomitrella patens SR proteins[J]. Frontiers in Plant Science, 2020, 11:286. [22] THIJSSEN V L, HEUSSCHEN R, CAERS J, et al. Galectin expression in cancer diagnosis and prognosis:A systematic review[J]. Biochimica et Biophysica Acta, 2015, 1855(2):235-247. [23] SAHEBI M, HANAFI M M, VAN WIJNEN A J, et al. Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins[J]. Gene, 2016, 587(2):107-119. [24] WANG Z, XIAO X, VAN NOSTRAND E, et al. General and specific functions of exonic splicing silencers in splicing control[J]. Molecular Cell, 2006, 23(1):61-70. [25] STEVENS M, OLTEAN S.Modulation of the apoptosis gene Bcl-x function through alternative splicing[J]. Frontiers in Genetics, 2019, 10:804. [26] DA S M, MOREIRA G A, GONCALVES D S R, et al. Splicing regulators and their roles in cancer biology and therapy[J]. BioMed Research International, 2015, 2015:150514. [27] LONG Y, SOU W H, YUNG K, et al. Distinct mechanisms govern the phosphorylation of different SR protein splicing factors[J]. The Journal of Biological Chemistry, 2019, 294(4):1312-1327. [28] DESCHENES M, CHABOT B.The emerging role of alternative splicing in senescence and aging[J]. Aging Cell, 2017, 16(5):918-933. [29] URBANSKI L M, LECLAIR N, ANCZUKOW O.Alternative-splicing defects in cancer:Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics[J]. Wiley Interdisciplinary Reviews.RNA, 2018, 9(4):e1476. [30] GEORGE A, AUBOL B E, FATTET L, et al. Disordered protein interactions for an ordered cellular transition:Cdc2-like kinase 1 is transported to the nucleus via its Ser-Arg protein substrate[J]. The Journal of Biological Chemistry, 2019, 294(24):9631-9641. [31] SAVISAAR R, HURST L D.Purifying selection on exonic splice enhancers in intronless genes[J]. Molecular Biology and Evolution, 2016, 33(6):1396-1418. [32] NTINI E, MARSICO A.Functional impacts of non-coding RNA processing on enhancer activity and target gene expression[J]. Journal of Molecular Cell Biology, 2019, 11(10):868-879. [33] AOYAMA Y, SASAI H, ABDELKREEM E, et al. A novel mutation (c.12113 T>A) in the polypyrimidine tract of the splice acceptor site of intron 2 causes exon 3 skipping in mitochondrial acetoacetyl-CoA thiolase gene[J]. Molecular Medicine Reports, 2017, 15(6):3879-3884. [34] GUEROUSSOV S, WEATHERITT R J, O'HANLON D, et al. Regulatory expansion in mammals of multivalent hnRNP assemblies that globally control alternative splicing[J]. Cell, 2017, 170(2):324-339. [35] YING Y, WANG X, VUONG C K, et al. Splicing activation by Rbfox requires self-aggregation through its tyrosine-rich domain[J]. Cell, 2017, 170(2):312-323. [36] SUN W, HU S, HU J, et al. Akirin 1 promotes myoblast differentiation by modulating multiple myoblast differentiation factors[J]. Bioscience Reports, 2019, 39(3):BSR20182152. [37] 易茜.IGF1剪接变异体IGF1Ec对成肌细胞生物学功能的影响及相关机理研究[D].重庆:重庆大学, 2016. YI Q.Effect of IGF1 splicing isoform IGF1Ec on the biological function of myoblasts and its related mechanism[D].Chongqing:Chongqing University, 2016.(in Chinese) [38] HU J, QIAN H, XUE Y, et al. PTB/nPTB:Master regulators of neuronal fate in mammals[J]. Biophysics Reports, 2018, 4(4):204-214. [39] GRABOWSKI P J, BLACK D L.Alternative RNA splicing in the nervous system[J]. Progress in Neurobiology, 2001, 65(3):289-308. [40] LE SOMMER C, LESIMPLE M, MEREAU A, et al. PTB regulates the processing of a 3'-terminal exon by repressing both splicing and polyadenylation[J]. Molecular and Cellular Biology, 2005, 25(21):9595-9607. [41] GOODING C, ROBERTS G C, SMITH C W.Role of an inhibitory pyrimidine element and polypyrimidine tract binding protein in repression of a regulated alpha-tropomyosin exon[J]. RNA, 1998, 4(1):85-100. [42] LÓPEZ-MARTÍNEZ A, SOBLECHERO-MARTÍN P, DE-LA-PUENTE-OVEJERO L, et al. An overview of alternative splicing defects implicated in myotonic dystrophy type Ⅰ[J]. Genes, 2020, 11(9):1109. [43] GAZZARA M R, MALLORY M J, ROYTENBERG R, et al. Ancient antagonism between CELF and RBFOX families tunes mRNA splicing outcomes[J]. Genome Research, 2017, 27(8):1360-1370. [44] SUREAU A, SAULIERE J, EXPERT-BEZANCON A, et al. CELF and PTB proteins modulate the inclusion of the beta-tropomyosin exon 6B during myogenic differentiation[J]. Experimental Cell Research, 2011, 317(1):94-106. [45] LIN J C, YAN Y T, HSIEH W K, et al. RBM4 promotes pancreas cell differentiation and insulin expression[J]. Molecular and Cellular Biology, 2013, 33(2):319-327. [46] SU C H, HUNG K Y, HUNG S C, et al. RBM4 regulates neuronal differentiation of mesenchymal stem cells by modulating alternative splicing of pyruvate kinase M[J]. Molecular and Cellular Biology, 2017, 37(3):e00466-16. [47] LU C C, CHEN T H, WU J R, et al. Phylogenetic and molecular characterization of the splicing factor RBM4[J]. PLoS One, 2013, 8(3):e59092. [48] YANG J, HUNG L H, LICHT T, et al. RBM24 is a major regulator of muscle-specific alternative splicing[J]. Developmental Cell, 2014, 31(1):87-99. [49] LIN J C, TARN W Y.RBM4 down-regulates PTB and antagonizes its activity in muscle cell-specific alternative splicing[J]. The Journal of Cell Biology, 2011, 193(3):509-520. [50] TAMURA Y.Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21(1):75-82. [51] ABOELKASSEM Y, TRAYANOVA N.Tropomyosin dynamics during cardiac muscle contraction as governed by a multi-well energy landscape[J]. Progress in Biophysics and Molecular Biology, 2019, 144:102-115. [52] YAMADA Y, NAMBA K, FUJII T.Cardiac muscle thin filament structures reveal calcium regulatory mechanism[J]. Nature Communications, 2020, 11(1):153. [53] ZHU Y, ZHANG J W, QI J, et al. Molecular regulation mechanism of Myomaker and Myomerger in myoblast fusion[J]. Yi Chuan, 2019, 41(12):1110-1118. [54] 孔旭.Rbm24调控心脏肌节组装及与心肌病关系的研究[D].厦门:厦门大学, 2018. KONG X.Rbm24 modulated cardiac segmental assembly and its relationship with cardiomyopathy[D].Xiamen:Xiamen University, 2018.(in Chinese) [55] LAAKSO J M, LEWIS J H, SHUMAN H, et al. Control of myosin-Ⅰ force sensing by alternative splicing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2):698-702. [56] GHALEB A M, BIALKOWSKA A B, SNIDER A J, et al. IQ motif-containing GTPase-activating protein 2(IQGAP2) is a novel regulator of colonic inflammation in mice[J]. PLoS One, 2015, 10(6):e129314. [57] SUGI H, CHAEN S, AKIMOTO T.Electron microscopic recording of the power and recovery strokes of individual myosin heads coupled with ATP hydrolysis:Facts and implications[J]. International Journal of Molecular Sciences, 2018, 19(5):1368. [58] GALLEGO M E, SIRAND-PUGNET P, DUROSAY P, et al. Tissue-specific splicing of two mutually exclusive exons of the chicken beta-tropomyosin pre-mRNA:Positive and negative regulations[J]. Biochimie, 1996, 78(6):457-465. [59] GALLEGO M E, BALVAY L, BRODY E.cis-acting sequences involved in exon selection in the chicken beta-tropomyosin gene[J]. Molecular and Cellular Biology, 1992, 12(12):5415-5425. [60] LIBRI D, GOUX-PELLETAN M, BRODY E, et al. Exon as well as intron sequences are cis-regulating elements for the mutually exclusive alternative splicing of the beta tropomyosin gene[J]. Molecular and Cellular Biology, 1990, 10(10):5036-5046. [61] GALLEGO M E, GATTONI R, STEVENIN J, et al. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A[J]. The EMBO Journal, 1997, 16(7):1772-1784. [62] EXPERT-BEZANCON A, SUREAU A, DUROSAY P, et al. hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B[J]. The Journal of Biological Chemistry, 2004, 279(37):38249-38259. [63] BAREJA A, HOLT J A, LUO G, et al. Human and mouse skeletal muscle stem cells:Convergent and divergent mechanisms of myogenesis[J]. PLoS One, 2014, 9(2):e90398. [64] NIKONOVA E, KAO S Y, RAVICHANDRAN K, et al. Conserved functions of RNA-binding proteins in muscle[J]. The International Journal of Biochemistry & Cell Biology, 2019, 110:29-49. [65] CHARLESTON J S, SCHNELL F J, DWORZAK J, et al. Eteplirsen treatment for Duchenne muscular dystrophy:Exon skipping and dystrophin production[J]. Neurology, 2018, 90(24):e2146-e2154. [66] RODRIGUEZ J M, POZO F, DI DOMENICO T, et al. An analysis of tissue-specific alternative splicing at the protein level[J]. PLoS Computational Biology, 2020, 16(10):e1008287. [67] NAKKA K, GHIGNA C, GABELLINI D, et al. Diversification of the muscle proteome through alternative splicing[J]. Skelet Muscle, 2018, 8(1):8. [68] NIKONOVA E, KAO S Y, SPLETTER M L.Contributions of alternative splicing to muscle type development and function[J]. Seminars in Cell & Developmental Biology, 2020, 104:65-80. [69] REISER P J, MOSS R L, GIULIAN G G, et al. Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition[J]. The Journal of Biological Chemistry, 1985, 260(16):9077-9080. [70] ANDERSON R L, TRIVEDI D V, SARKAR S S, et al. Deciphering the super relaxed state of human beta-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(35):E8143-E8152. [71] KRONERT W A, MELKANI G C, MELKANI A, et al. Alternative relay and converter domains tune native muscle myosin isoform function in Drosophila[J]. Journal of Molecular Biology, 2012, 416(4):543-557. [72] YANG C, KAPLAN C N, THATCHER M L, et al. The influence of myosin converter and relay domains on cross-bridge kinetics of Drosophila indirect flight muscle[J]. Biophysical Journal, 2010, 99(5):1546-1555. [73] MILLER B M, BLOEMINK M J, NYITRAI M, et al. A variable domain near the ATP-binding site in Drosophila muscle myosin is part of the communication pathway between the nucleotide and actin-binding sites[J]. Journal of Molecular Biology, 2007, 368(4):1051-1066. [74] PANDEY M, STORMO G D, DUTCHER S K.Alternative splicing during the Chlamydomonas reinhardtii cell cycle[J]. G3(Bethesda), 2020, 10(10):3797-3810. [75] YANG M, SHANG X, ZHOU Y, et al. Full-length transcriptome analysis of Plasmodium falciparum by single-molecule long-read sequencing[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11:631545. [76] FAIGENBLOOM L, RUBINSTEIN N D, KLOOG Y, et al. Regulation of alternative splicing at the single-cell level[J]. Molecular Systems Biology, 2015, 11(12):845. [77] TSAO A E, EDDINGER T J.Smooth muscle myosin heavy chains combine to form three native myosin isoforms[J]. The American Journal of Physiology, 1993, 264(5 Pt2):H1653-H1662. [78] EDDINGER T J, KORWEK A A, MEER D P, et al. Expression of smooth muscle myosin light chain 17 and unloaded shortening in single smooth muscle cells[J]. American Journal of Physiology.Cell Physiology, 2000, 278(6):C1133-C1142. |
[1] | HUANG Xiaojiu, LEI Lei, PENG Xiaoye, WANG Kaixin, CHEN Yingyi, WANG Jixian, WANG Yuge, DUAN Deyong, YANG Yi, WANG Aibing. Construction of a IPEC-J2 Cell Line Stably Overexpressing NM-ⅡA Tail and Its Effect on Porcine Epidemic Diarrhea Virus Infection [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(5): 2243-2252. |
[2] | ZHAO Weimin, WANG Hong, XU Pan, CHEN Zhe, TAO Xiaoli, LI Bixia, FU Yanfeng, CHENG Jinhua. Identification and Characterization Analysis of Unannotated Transcripts of Genes Response to Viral Infection in Porcine PK15 Cells Stimulated by PolyI:C [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1622-1631. |
[3] | XIE Binghong, SHAN Yanju, FAN Chenyu, XUE Fuguang, WU Hongxiang, JU Xiaojun, SHU Jingting, LIU Yifan. Research Progress on Influencing Factors and Transformation of Skeletal Muscle Fiber Types in Poultry [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1561-1572. |
[4] | LANG Yu-miao, WANG Yong-feng, LI Jing, LIU Fei, FENG Yong-hong, SUN Bao-zhong, ZHANG Song-shan, LI Hai-peng, LIU Xuan. Study on Muscle Fiber Types and Meat Quality Traits of Chinese Simmental Cattle [J]. China Animal Husbandry & Veterinary Medicine, 2016, 43(6): 1489-1493. |
[5] | WANG Chen, ZHANG Jing, XIE Bing-kun, ZHOU Rong, LI Kui, TANG Zhong-lin. Expression and Function Analysis of miR-143 in Muscle Cells [J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(10): 7-12. |
[6] | LI Hong, ZHOU En-min, YI Jian-zhong. Research Progress on Cellular Receptors of Porcine Reproductive and Respiratory Syndrome Virus [J]. China Animal Husbandry & Veterinary Medicine, 2013, (7): 77-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||